首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The long‐standing paradigm that all peroxisomal proteins are imported post‐translationally into pre‐existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co‐translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N‐terminal transmembrane segment (TMS) of ribosome‐bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3‐containing ribosome?nascent chain complex (RNC) to the translocon, where an ordered multistep pathway integrates the nascent chain into the membrane adjacent to translocon proteins Sec61α and TRAM. This insertion of PEX3 into the ER is physiologically relevant because PEX3 then exits the ER via budding vesicles in an ATP‐dependent process. This study identifies early steps in human peroxisomal biogenesis by demonstrating sequential stages of PMP passage through the mammalian ER.   相似文献   

2.
During cotranslational integration of a eukaryotic multispanning polytopic membrane protein (PMP), its hydrophilic loops are alternately directed to opposite sides of the ER membrane. Exposure of fluorescently labeled nascent PMP to the cytosol or ER lumen was detected by collisional quenching of its fluorescence by iodide ions localized in the cytosol or lumen. PMP loop exposure to the cytosol or lumen was controlled by structural rearrangements in the ribosome, translocon, and associated proteins that occurred soon after a nascent chain transmembrane segment (TMS) entered the ribosomal tunnel. Each successive TMS, although varying in length, sequence, hydrophobicity, and orientation, reversed the structural changes elicited by its predecessor, irrespective of loop size. Fluorescence lifetime data revealed that TMSs occupied a more nonpolar environment than secretory proteins inside the aqueous ribosome tunnel, which suggests that TMS recognition by the ribosome involves hydrophobic interactions. Importantly, the TMS-triggered structural rearrangements that cycle nascent chain exposure between cytosolic and lumenal occur without compromising the permeability barrier of the ER membrane.  相似文献   

3.
Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome–Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S–RQC and 80S–Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome–translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel.  相似文献   

4.
Comparative analysis of ribosomal RNA (rRNA) sequences has elucidated phylogenetic relationships. However, this powerful approach has not been fully exploited to address ribosome function. Here we identify stretches of evolutionarily conserved sequences, which correspond with regions of high functional importance. For this, we developed a structurally aligned database, FLORA (full-length organismal rRNA alignment) to identify highly conserved nucleotide elements (CNEs) in 23S–28S rRNA from each phylogenetic domain (Eukarya, Bacteria, and Archaea). Universal CNEs (uCNEs) are conserved in sequence and structural position in all three domains. Those in regions known to be essential for translation validate our approach. Importantly, some uCNEs reside in areas of unknown function, thus identifying novel sequences of likely great importance. In contrast to uCNEs, domain-specific CNEs (dsCNEs) are conserved in just one phylogenetic domain. This is the first report of conserved sequence elements in rRNA that are domain-specific; they are largely a eukaryotic phenomenon. The locations of the eukaryotic dsCNEs within the structure of the ribosome suggest they may function in nascent polypeptide transit through the ribosome tunnel and in tRNA exit from the ribosome. Our findings provide insights and a resource for ribosome function studies.  相似文献   

5.
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways.  相似文献   

6.
易位子辅助膜蛋白插入内质网膜是膜蛋白质生物生成的关键过程。了解不同类分子插入生物膜的机制是预测溶质分子透膜速度的先决条件,这也是药物设计和药理学领域的关键因素。根据插入机制,可以设计插膜肽直接用于疾病治疗,或者作为载体有选择性地将药物靶向特定细胞。自从2004年第1个易位子通道蛋白(Sec)的晶体结构被解析后,近十几年来大量的实验和理论研究,都在致力于揭示Sec辅助膜蛋白插入过程的分子机制。本文总结了过去该领域的实验和分子动力学模拟研究进展,从热力学方面重点分析了造成膜蛋白插入自由能分子动力学模拟计算值,以及实验值间偏差的原因。其中,根据研究条件精确设置模拟参数、插入造成的膜变形对自由能计算有很大的影响;核糖体为新生肽插入到Sec通道过程提供了能量,核糖体与Sec的结合影响Sec侧门的开放程度和Sec通道的结构,从而降低膜插入自由能。Sec辅助膜蛋白插入是一个极其复杂的过程,但整个过程仍然符合热力学和动力学的基本原理,尽管疏水性是Sec辅助膜蛋白质插入的关键性因素,但也不能忽略动力学因素的影响。  相似文献   

7.
In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome-translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome-translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP.  相似文献   

8.
Polytopic protein biogenesis represents a critical, yet poorly understood area of modern biology with important implications for human disease. Inherited mutations in a growing array of membrane proteins frequently lead to improper folding and/or trafficking. The cystic fibrosis transmembrane conductance regulator (CFTR) is a primary example in which point mutations disrupt CFTR folding and lead to rapid degradation in the endoplasmic reticulum (ER). It has been difficult, however, to discern the mechanistic principles of such disorders, in part, because membrane protein folding takes place coincident with translation and within a highly specialized environment formed by the ribosome, Sec61 translocon, and the ER membrane. This ribosome-translocon complex (RTC) coordinates the synthesis, folding, orientation and integration of transmembrane segments across and into the ER membrane. At the same time, RTC function is controlled by specific sequence determinants within the nascent polypeptide. Recent studies of CFTR and other native membrane proteins have begun to define novel variations in translocation pathways and to elucidate the specific steps that establish complex topology. This article will attempt to reconcile advances in our understanding of protein biogenesis with emerging models of RTC function. In particular, it will emphasize how information within the nascent polypeptide is interpreted by and in turn controls RTC dynamics to generate the broad structural and functional diversity observed for naturally occurring membrane proteins.Abbreviations: AQP, aquaporin; CFTR, cystic fibrosis transmembrane conductance regulator; ECL, extracellular loop; EM, electron microscopy; ER, endoplasmic reticulum; ICL, intracellular loop; PTC, peptidyltransferase center; RNC, ribosome-nascent chain; RTC, ribosome-translocon complex; SRP, signal recognition particle; SR, SRP receptor; TM, transmembrane (segment); TMD, transmembrane domain. ABC, ATP binding cassette; BiP, heavy chain binding protein; FRET, Förster resonance energy transfer; NBD, nucleotide binding domain; SPC, signal peptidase complex; TrAF, translocation-associated factors; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein.  相似文献   

9.
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways.  相似文献   

10.
Synaptotagmin II is a type I signal-anchor protein, in which the NH(2)-terminal domain of 60 residues (N-domain) is located within the lumenal space of the membrane and the following hydrophobic region (H-region) shows transmembrane topology. We explored the early steps of cotranslational integration of this molecule on the endoplasmic reticulum membrane and demonstrated the following: (a) The translocation of the N-domain occurs immediately after the H-region and the successive positively charged residues emerge from the ribosome. (b) Positively charged residues that follow the H-region are essential for maintaining the correct topology. (c) It is possible to dissect the lengths of the nascent polypeptide chains which are required for ER targeting of the ribosome and for translocation of the N-domain, thereby demonstrating that different nascent polypeptide chain lengths are required for membrane targeting and N-domain translocation. (d) The H-region is sufficiently long for membrane integration. (e) Proline residues preceding H-region are critical for N-domain translocation, but not for ER targeting. The proline can be replaced with amino acid with low helical propensity.  相似文献   

11.
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the “foot” region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis.  相似文献   

12.
Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.  相似文献   

13.
A defining feature of eukaryotic polytopic protein biogenesis involves integration, folding, and packing of hydrophobic transmembrane (TM) segments into the apolar environment of the lipid bilayer. In the endoplasmic reticulum, this process is facilitated by the Sec61 translocon. Here, we use a photocross-linking approach to examine integration intermediates derived from the ATP-binding cassette transporter cystic fibrosis transmembrane conductance regulator (CFTR) and show that the timing of translocon-mediated integration can be regulated at specific stages of synthesis. During CFTR biogenesis, the eighth TM segment exits the ribosome and enters the translocon in proximity to Sec61α. This interaction is initially weak, and TM8 spontaneously dissociates from the translocon when the nascent chain is released from the ribosome. Polypeptide extension by only a few residues, however, results in stable TM8-Sec61α photocross-links that persist after peptidyl-tRNA bond cleavage. Retention of these untethered polypeptides within the translocon requires ribosome binding and is mediated by an acidic residue, Asp924, near the center of the putative TM8 helix. Remarkably, at this stage of synthesis, nascent chain release from the translocon is also strongly inhibited by ATP depletion. These findings contrast with passive partitioning models and indicate that Sec61α can retain TMs and actively inhibit membrane integration in a sequence-specific and ATP-dependent manner.  相似文献   

14.
During polytopic protein biogenesis, multiple transmembrane segments (TMs) must pass through the ribosome exit tunnel and into the Sec61 translocon prior to insertion into the endoplasmic reticulum membrane. To investigate how movement of a newly synthesized TM along this integration pathway might be influenced by synthesis of a second TM, we used photocross-linking probes to detect the proximity of ribosome-bound nascent polypeptides to Sec61alpha. Probes were inserted at sequential sites within TM2 of the aquaporin-1 water channel by in vitro translation of truncated mRNAs. TM2 first contacted Sec61alpha when the probe was positioned approximately 38 residues from the ribosome peptidyltransferase center, and TM2-Sec61alpha photoadducts decreased markedly when the probe was >80 residues from the peptidyltransferase center. Unexpectedly, as nascent chain length was gradually extended, photocross-linking at multiple sites within TM2 abruptly and transiently decreased, indicating that TM2 initially entered, withdrew, and then re-entered Sec61alpha. This brief reduction in TM2 photocross-linking coincided with TM3 synthesis. Replacement of TM3 with a secretory reporter domain or introduction of proline residues into TM3 changed the TM2 cross-linking profile and this biphasic behavior. These findings demonstrate that the primary and likely secondary structure of the nascent polypeptide within the ribosome exit tunnel can influence the timing with which topogenic determinants contact, enter, and pass through the translocon.  相似文献   

15.
Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.  相似文献   

16.
We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the alpha and beta subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61alpha and Sec61beta during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the "stage" of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide.  相似文献   

17.
Polytopic proteins are synthesized in the endoplasmic reticulum (ER) by ribosomes docked at the Sec61 translocation channel. It is generally assumed that, upon termination of translation, polypeptides are spontaneously released into the ER membrane where final stages of folding and assembly are completed. Here we investigate early interactions between the ribosome-translocon complex and cystic fibrosis transmembrane conductance regulator (CFTR), a multidomain ABC transporter, and demonstrate that this is not always the case. Using in vitro and Xenopus oocyte expression systems we show that, during and immediately following synthesis, nascent CFTR polypeptides associate with large, heterogeneous, and dynamic protein complexes. Partial-length precursors were quantitatively isolated in a non-covalent, puromycin-sensitive complex (>3,500 kDa) that contained the Sec61 ER translocation machinery and the cytosolic chaperone Hsc70. Following the completion of synthesis, CFTR was gradually released into a smaller (600-800 kDa) ATP-sensitive complex. Surprisingly, release of full-length CFTR from the ribosome and translocon was significantly delayed after translation was completed. Moreover, this step required both nucleotide triphosphates and cytosol. Release of control proteins varied depending on their size and domain complexity. These studies thus identify a novel energy-dependent step early in the CFTR maturation pathway that is required to disengage nascent CFTR from ER biosynthetic machinery. We propose that, contrary to current models, the final stage of membrane integration is a regulated process that can be influenced by the state of nascent chain folding, and we speculate that this step is influenced by the complex multidomain structure of CFTR.  相似文献   

18.
Ribosomes synthesizing secretory and membrane proteins are bound to translocons at the membrane of the endoplasmic reticulum (ER). Both the ribosome and translocon are complex macromolecular machines whose structural and functional interactions are poorly understood. A new study by Pool (Pool, M.R. 2009. J. Cell Biol. 185:889–902) has now shown that the structure of the translocon is dictated by the identity of the protein being synthesized by the ribosome, thereby demonstrating that the two macromolecular machines are structurally coupled for functional purposes. The study also identifies an unexpected component in the apparent molecular linkage that connects the two machines, a discovery that shows the current view of translocon structure is oversimplified.The mammalian translocon is assembled from four core proteins (the heterotrimeric Sec61α, Sec61β, Sec61γ, and translocating nascent chain–associated membrane protein [TRAM]) and various accessory proteins, only some of which have well-defined functions (e.g., the signal peptidase and the oligosaccharyltransferase; Rapoport, 2007). This assembly forms the aqueous, gated pore that transports nascent proteins through the membrane (Crowley et al., 1994). Because two molecular machines, the ribosome and the translocon, function simultaneously on the same nascent protein during cotranslational protein trafficking, they presumably function together as a unit (the ribosome–translocon complex [RTC]) that includes all proteins regularly associated with the translocon. Yet these machines are commonly treated as separate entities in papers and talks; ribosomologists tend to assume that membrane-bound ribosomes are indistinguishable from free ribosomes except for their location, whereas translocophiles tend to consider the ribosome simply a source of substrate that docks on the translocon. However, the results published in this issue (see Pool on p. 889) demonstrate that the identity of the nascent chain being synthesized alters RTC structure, thereby revealing that the two machines are indeed coupled.The nascent chain moves through the large ribosomal subunit via an ∼100-Å-long tunnel that is contiguous with the aqueous pore formed by the translocon (Fig. 1 A; Crowley et al., 1994; Beckmann et al., 1997; Nissen et al., 2000). Nascent chain control of protein trafficking from inside the ribosome was first identified when the location of a nascent chain transmembrane segment (TMS) in the tunnel was found to dictate whether the nascent chain was exposed to the cytosolic, lumenal, or neither side of the ER membrane (Liao et al., 1997). It was postulated that a weakly nonpolar patch in the tunnel nucleated the folding of the TMS into an α-helix, which in turn elicited conformational changes in the RTC that triggered complementary changes at each end of the pore to minimize ion passage/leakage through the translocon during integration. A later study revealed that ribosome-induced folding of a nascent chain TMS did occur, and this folding coincided with TMS photocrosslinking to Rpl17 at a constriction in the tunnel (Fig. 1 B; Woolhead et al., 2004), a site formed in part by a loop of Rpl17 that extends far into the large ribosomal subunit (Nissen et al., 2000; Berisio et al., 2003).Open in a separate windowFigure 1.Nascent chain control of translocon structure from inside the ribosome. (A and B) A nascent secretory protein is fully extended during synthesis (A), whereas the TMS in a nascent membrane protein (B) folds into an α-helix upon reaching a tunnel constriction formed by Rpl4 and Rpl17. Although Sec61β is always adjacent to Rpl17 in an RTC, RAMP4 is recruited to the RTC and is cross-linked to Rpl17 only when a TMS reaches the constriction. The cross-linking of Rpl17 to a TMS and to RAMP4 coincides with the BiP-mediated closure (either directly, as depicted, or indirectly) of the lumenal end of the aqueous pore and the subsequent opening of the ion-tight ribosome–translocon junction (depicted by a tilting of the ribosomal subunit). PTC, peptidyl transferase center.Pool (2009) found that ribosomal protein Rpl17, located primarily at the ribosomal surface near the tunnel exit, was chemically cross-linked to Sec61β, thereby showing that Sec61β is adjacent to Rpl17 in all RTCs. But when the ribosome was synthesizing a membrane protein, Rpl17 also cross-linked to RAMP4, a small ribosome-associated membrane protein associated with the translocon (Schröder et al., 1999). Strikingly, Rpl17 cross-linking to RAMP4 was detected only after the TMS in the nascent chain reached the tunnel constriction (Fig. 1 B). The coincidence of these two cross-linking events, TMS to Rpl17 and Rpl17 to RAMP4, indicates that direct contact between the nascent chain TMS and Rpl17 inside the tunnel triggered a conformational change that was transmitted through the Rpl17 extension to the ribosomal surface and that stimulated RAMP4 association with the RTC close to Rpl17. Thus, a structural feature found only in nascent membrane proteins caused a structural realignment of the RTC. This change correlates with the transition of RTC operations from translocation to integration seen in earlier studies (Liao et al., 1997; Haigh and Johnson, 2002; Woolhead et al., 2004).The data shown by Pool (2009) also demonstrate that the translocon, at least in mammals, is not as structurally defined as has been portrayed. Uncertainties in the composition, stoichiometry, exchangeability, and macromolecular arrangement of the core and associated translocon proteins, as well as translocon dynamics and homogeneity, have been recognized for some time (Johnson and van Waes, 1999), but only recently have translocon heterogeneity (Snapp et al., 2004; Shibatani et al., 2005), conformational changes (Hamman et al., 1997), and exchangeable membrane proteins (e.g., importin α-16 appears to be a sorting factor for inner nuclear membrane proteins; Saksena et al., 2004, 2006) been documented. The data now show that RAMP4 in the bilayer associates with the RTC near Rpl17 when a TMS binds Rpl17 inside the ribosome Pool, 2009). Thus, translocon structure is dynamic and involves more proteins than the core Sec61α, Sec61β, Sec61γ, and TRAM proteins. Equally important, as shown by Pool (2009), translocon structure can be altered by a nascent chain structural feature from inside the ribosome. Thus, the structures of the ribosome and translocon are intimately coupled, and the conversion of the RTC from one functional state to another involves structural changes (e.g., the introduction of a new protein) not accommodated in current models of translocon structure and function.The study by Pool (2009) also emphasizes the importance of using multiple approaches to examine complex systems, especially those containing membranes. Protein crystallography and cryo-EM have made tremendous strides recently in describing the structures of molecular assemblies such as the ribosome and translocon (Beckmann et al., 1997; Nissen et al., 2000; Berisio et al., 2003; Van den Berg et al., 2004), and it is difficult to overstate how important those studies have been in terms of influencing subsequent RTC research. Yet no single technique is a panacea, and the data shown by Pool (2009) dramatically highlight the limitations of assuming that crystallographic and cryo-EM studies provide all that one needs to understand the structural aspects of how a machine works, much less the functional, mechanistic, and/or regulatory aspects. For example, RAMP4, the core protein TRAM, and other translocon-associated proteins have not been identified in cryo-EM images of the detergent-solubilized RTC as a result of their small size, flexibility, and/or weak association with the Sec61 core. Similarly, the existence of ribosome-induced TMS folding inside the ribosome tunnel and its regulation of nascent chain accessibility to alternate sides of the ER membrane would not have been detected with samples that had been detergent-treated and lacked water, the lipid bilayer, and some of the core and associated translocon proteins. Thus, although models derived from crystallographic and cryo-EM images of detergent-treated, incomplete, anhydrous, and nonfunctional RTC samples may prove to be accurate, well-designed experiments and controls using intact samples in aqueous solution must be performed to directly correlate structural and functional states and thereby fully appreciate subtle and sophisticated operational and regulatory mechanisms that do not withstand harsh treatment.There is much left to learn about the RTC. Rpl17 acts as a direct communication conduit between a TMS in the tunnel and the translocon, but it remains to be seen whether RAMP4 then mediates transmembrane communication and triggers BiP binding. Similarly, RAMP4 interactions with the RTC have not been characterized nor have the protein composition, arrangement, and dynamics of the mammalian ER translocon in intact membranes. Thus, additional intriguing surprises are ahead.  相似文献   

19.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   

20.
Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, or translocon, which mediates the transport of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. Upon translocon binding, transmembrane spans interact with a lateral gate, which regulates access to membrane phospholipids, and a lumenal gate, which controls the translocation of soluble domains. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. Our findings indicate that the conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Transmembrane spans and lumenal domains are therefore exposed to the cytosol during integration of a polytopic membrane protein, which may pose a challenge to the fidelity of membrane protein integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号