首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth-arrested rat mesangial cells (RMCs) at a G0/G1 interphase stimulated to divide in hyperglycemic medium initiate intracellular hyaluronan synthesis that induces autophagy/cyclin D3-induced formation of a monocyte-adhesive extracellular hyaluronan matrix after completing cell division. This study shows that heparin inhibits the intracellular hyaluronan synthesis and autophagy responses, but at the end of cell division it induces synthesis of a much larger extracellular monocyte-adhesive hyaluronan matrix. Heparin bound to RMC surfaces by 1 h, internalizes into the Golgi/endoplasmic reticulum region by 2 h, and was nearly gone by 4 h. Treatment by heparin for only the first 4 h was sufficient for its function. Streptozotocin diabetic rats treated daily with heparin showed similar results. Glomeruli in sections of diabetic kidneys showed extensive accumulation of autophagic RMCs, increased hyaluronan matrix, and influx of macrophages over 6 weeks. Hyaluronan staining in the glomeruli of heparin-treated diabetic rats was very high at week 1 and decreased to near control level by 6 weeks without any RMC autophagy. However, the influx of macrophages by 6 weeks was as pronounced as in diabetic glomeruli. The results are as follows: 1) heparin blocks synthesis of hyaluronan in intracellular compartments, which prevents the autophagy and cyclin D3 responses thereby allowing RMCs to complete cell division and sustain function; 2) interaction of heparin with RMCs in early G1 phase is sufficient to induce signaling pathway(s) for its functions; and 3) influxed macrophages effectively remove the hyaluronan matrix without inducing pro-fibrotic responses that lead to nephropathy and proteinurea in diabetic kidneys.  相似文献   

2.
《Autophagy》2013,9(6):864-865
Hyperglycemia is one of the factors that induces autophagy. Our recent studies demonstrate that dividing cells in hyperglycemic medium initiate an intracellular stress response that involves synthesis of hyaluronan and its extrusion extracellularly into structures that are recognized by inflammatory cells. During the later phase, a complex with cyclin D3, CDK4 and C/EBPα was observed in the hyperglycemic cultures, and cyclin D3 and C/EBPα colocalized in coalesced perinuclear honeycomb-like structures with embedded hyaluronan. Further, microtubule-associated protein 1 light chain 3 (LC3), a marker for autophagy, colocalizes with these structures. These results suggest that cyclin D3 is a central coordinator that controls the organization of a complex set of proteins that regulate autophagy and subsequent formation of the monocyte-adhesive hyaluronan matrix. However, the early intracellular accumulation of hyaluronan could have a critical role in initiating or regulating these downstream events.  相似文献   

3.
Hyaluronan matrices are ubiquitous in normal and pathological biological processes. This remarkable diversity is related to their unique mechanism of synthesis by hyaluronan synthases. These enzymes are normally activated in the plasma membrane and utilize cytosolic substrates directly to form these large polyanionic glycosaminoglycans, which are extruded directly into the extracellular space. The extracellular matrices that are formed interact with cell surface receptors, notably CD44, that often dictate the biological processes, as described in the accompanying minireviews of this series. This article focuses on the discovery in recent studies that many cell stress responses initiate the synthesis of a monocyte-adhesive hyaluronan extracellular matrix, which forms a central focus for subsequent inflammatory processes that are modulated by the dialogue between the matrix and the inflammatory cells. The mechanisms involve active hyaluronan synthases at the cell membrane when cell stresses occur at physiological levels of glucose. However, dividing cells at hyperglycemic levels of glucose initiate the synthesis of hyaluronan in intracellular compartments, which induces endoplasmic reticulum stress and autophagy, processes that probably contribute greatly to diabetic pathologies.  相似文献   

4.
Previous studies and ongoing research indicate the importance of an interaction between a putative receptor on dividing cells in hyperglycemia and the non-reducing end motifs of heparin stored in mast cell secretory granules and how this interaction prevents activation of hyaluronan synthesis in intracellular compartments and subsequent autophagy. This suggests a new role for endosomal heparanase in exposing this cryptic motif present in the initial large heparin chains on serglycin and in the highly sulfated (NS) domains of heparan sulfate.  相似文献   

5.
Serum-starved, growth-arrested, near confluent rat mesangial cell cultures were stimulated to divide in medium with low (5.6 mm) or high (25.6 mm) glucose. In high glucose cultures Western blots showed large increases in cyclin D3 and CCAAT/enhancer-binding protein α (C/EBPα) at 48–72 h, concurrent with the production of a monocyte-adhesive hyaluronan matrix, whereas low glucose and mannitol osmotic control cultures did not. Cyclin D3 small interfering RNA inhibited both the synthesis of this matrix and the up-regulation of C/EBPα in cultures exposed to high glucose, indicating that cyclin D3 is a key mediator in regulating responses of dividing mesangial cells to hyperglycemia. A complex with cyclin D3, cyclin-dependent kinase 4, and C/EBPα was observed at 48–72 h in the hyperglycemic cultures, and cyclin D3 and C/EBPα were spatially co-localized in coalesced perinuclear honeycomb-like structures with embedded hyaluronan. Furthermore, microtubule-associated protein 1 light chain 3, a marker for autophagy, colocalizes with these structures. These results suggest that cyclin D3 is a central coordinator that controls the organization of a complex set of proteins that regulate autophagy, formation of the monocyte-adhesive hyaluronan matrix, and C/EBPα-mediated lipogenesis. Abnormal deposits of hyaluronan, cyclin D3, and C/EBPα were present in glomeruli of kidney sections from hyperglycemic rats 4 weeks after streptozotocin treatment, indicating that similar processes likely occur in vivo. Mesangial cell cultures treated with poly(I:C) or tunicamycin in normal glucose media synthesized monocyte-adhesive hyaluronan matrices but with concurrent down-regulation of cyclin D3. This indicates that the cyclin D3 mechanism is induced by hyperglycemia and is distinct from those involved in these cell stress responses.One of the abnormalities detected after the onset of hyperglycemic diabetes in the streptozotocin rat model is an early (already by 3 days) and self-limited proliferation of glomerular mesangial cells that is associated with de novo expression of α-smooth muscle actin, an activation marker of the proliferative mesangial cell phenotype (13). After this early transient proliferation and phenotypic activation, there is a prominent glomerular infiltration of monocytes and macrophages (3). Our previous study showed that abnormal hyaluronan matrices also form in the hyperglycemic glomeruli within 1 week (4). We also showed that quiescent, growth-arrested rat mesangial cells, stimulated to divide in a hyperglycemic level of glucose (25.6 mm), form a hyaluronan matrix that is adhesive for U937 monocytic cells. These results suggest that there is an important link in vivo between mesangial cell division in response to hyperglycemia, glomerular hyaluronan matrix synthesis, and the accumulation of monocytes/macrophages in glomerular diabetic nephritis.Previous studies have shown that smooth muscle cell cultures exposed to tunicamycin (endoplasmic reticulum stress) or poly(I:C) (viral mimetic) synthesize hyaluronan cable-like structures that are adhesive for monocytes (5, 6). The experiments described in this report indicate that growth-arrested mesangial cells stimulated to divide in hyperglycemic medium synthesize similar structures by a distinctly different mechanism that requires protein kinase C up-regulation at the initiation of cell division and subsequent up-regulation of cyclin D3 after completion of cell division. The up-regulation of cyclin D3 in turn appears to control an autophagic response and is coordinate with up-regulation of C/EBPα, a factor that controls lipogenic responses. Evidence is also provided that cyclin D3 and C/EBPα also contribute to glomerular responses to hyperglycemia in vivo.  相似文献   

6.
High molecular weight hyaluronan (M r 400 000) obtained from human umbilical cord was depolymerized by sonication for 10 h into small molecules and finally into molecules of constant size (M r 11 000). The molecular size of the depolymerized hyaluronan was unaltered even under different conditions of sonication. After sonication, the main sugar residues at the reducing and non-reducing termini of depolymerized hyaluronan wereN-acetylglucosamine (86%) and glucuronic acid (98%), respectively. Hyaluronans derived from rooster comb (M r 1×106) andStreptococcus zooepidemicus (M r 1.2×106) were deploymerized into molecules of different but characteristic sizes by sonication. On the other hand, neither chondroitin sulfate nor glycogen was depolymerized by sonication. These results suggest that high molecular weight hyaluronan may have some weak linkages related toN-acetylglucosamine in the chain, which are extremely sensitive to sonication. At present, however, the nature of these linkages is still unclear.Abbreviations HA hyaluronan - PA 2-aminopyridine  相似文献   

7.
The critical hyaluronan binding motif (HABM) in sialoprotein associated with cones and rods (SPACR) has already been determined. As sialoproteoglycan associated with cones and rods, another interphotoreceptor matrix molecule, binds to chondroitin sulfate and heparin with or without the employment of HABMs, respectively, we evaluated and compared the binding of these glycosaminoglycans to SPACR. A western blotting study in combination with inhibition assays showed that heparin bound specifically to SPACR. A series of GST fusion proteins covering the whole SPACR molecule narrowed down the region responsible for the binding. Finally, a site-directed mutagenesis assay demonstrated that the critical HABM also acts as a specific binding site for heparin. These results were supported with mutual inhibitions by hyaluronan and heparin in analyses using GST fusion proteins and native SPACR derived from retina. Thus, these glycosaminoglycans bind to SPACR in a different manner than to sialoproteoglycan associated with cones and rods. The competitive binding between hyaluronan and heparin to SPACR, mediated through the identical HABM, may dominate the functions of SPACR, in turn involving physiological and pathological processes involved in retinal development, aging and other related disorders.  相似文献   

8.
N-Acetylglucosamine-6-sulfate sulfatase activity was assayed by incubation of the radiolabeled monosaccharide N-acetylglucosamine [1-14C]6-sulfate (GlcNAc6S) with homogenates of leukocytes and cultured skin fibroblasts and concentrates of urine derived from normal individuals, patients affected with N-acetylglucosamine-6-sulfate sulfatase deficiency (Sanfilippo D syndrome, mucopolysaccharidosis type IIID), and patients affected with other mucopolysaccharidoses. The assay clearly distinguished affected homozygotes from normal controls and other mucopolysaccharidosis types. The level of enzymatic activity toward GlcNAc6S was compared with that toward a sulfated disaccharide and a sulfated trisaccharide prepared from heparin. The disaccharide was desulfated at the same rate as the monosaccharide and the trisaccharide at 30 times that of the monosaccharide. Sulfatase activity toward glucose 6-sulfate and N-acetylmannosamine 6-sulfate was not detected. Sulfatase activity in fibroblast homogenates with GlcNAc6S exhibited a pH optimum at pH 6.5, an apparent Km of 330 mumol/liter, and inhibition by both sulfate and phosphate ions. The use of radiolabeled GlcNAc6S substrate for the assay of N-acetylglucosamine-6-sulfate sulfatase in leukocytes and skin fibroblasts for the routine enzymatic detection of the Sanfilippo D syndrome is recommended.  相似文献   

9.
First-generation adenovirus (Ad) vectors that had been rendered replication defective by removal of the E1 region of the viral genome (ΔE1) or lacking the Ad E3 region in addition to E1 sequences (ΔE1ΔE3) induced G2 cell cycle arrest and inhibited traverse across G1/S in primary and immortalized human bronchial epithelial cells. Cell cycle arrest was independent of the cDNA contained in the expression cassette and was associated with the inappropriate expression and increase in cyclin A, cyclin B1, cyclin D, and cyclin-dependent kinase p34cdc2 protein levels. In some instances, infection with ΔE1 or ΔE1ΔE3 Ad vectors produced aneuploid DNA histogram patterns and induced polyploidization as a result of successive rounds of cell division without mitosis. Cell cycle arrest was absent in cells infected with a second-generation ΔE1Ad vector in which all of the early region E4 except the sixth open reading frame was also deleted. Consequently, E4 viral gene products present in ΔE1 or ΔE1ΔE3 Ad vectors induce G2 growth arrest, which may pose new and unintended consequences for human gene transfer and gene therapy.  相似文献   

10.
Previous studies of hyaluronan uptake and catabolism by lymph nodes indicated that the nodes might also add some HA of low molecular weight to the unabsorbed fraction that passes through from afferent to efferent lymph vessels.The ability of lymph nodes to synthesise HA and proteoglycans was therefore examined (i) by perfusion of [3H] acetate through an afferent lymph vessel in vivo, and recovery of labeled products from the efferent lymph vessel and from the node after perfusion; and (ii) by tissue culture of lymph nodes with [3H] acetate.Perfusion of lymph nodes with [3H] acetate in situ yielded: (a), in outflowing lymph, small amounts of chondroitin/dermatan sulfate within the first hour which continued to be produced for up to 24[emsp4 ]h; heparin in the second hour and HA in the third. In the nodes removed 17 to 19[emsp4 ]h later, equal amounts of hyaluronan and chondroitin/dermatan sulfate and heparan sulfate proteoglycans were detected. In the tissue culture of lymph nodes: (1) HA, heparin and proteoglycans of heparan sulfate and chondroitin/dermatan sulfate were released into the medium but in the cell extract only heparan sulfate proteoglycan was detected; and (ii) molecular weight of the released hyaluronan ranged widely but was mostly less than 4–5×105[emsp4 ]D; heparan sulfate proteoglycan was 2.8×104 to 9.4×105[emsp4 ]D; heparin 7.9×104[emsp4 ]D and chondroitin sulfate 1.3×104[emsp4 ]D, suggesting that the chondrotin sulfate were released from their proteoglycans core by enzymic degradation.It is concluded that lymph nodes can release HA, heparin, heparan sulfate and chondroitin/dermatan sulfate proteoglycans into efferent lymph but the amount of hyaluronan is likely to be small without immune or other stimulation and its molecular weight is lower than in other tissues.  相似文献   

11.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

12.
We examined, in vitro, whether hyaluronan induces slow cycling in placenta-derived mesenchymal stem cells (PDMSCs) by comparing cell growth on a hyaluronan-coated surface with cell growth on a tissue-culture polystyrene surface. The hyaluronan-coated surface significantly downregulated the proliferation of PDMSCs, more of which were maintained in the G0/G1 phases than were cells on the tissue-culture polystyrene surface. Both PKH-26 labeling and BrdU incorporation assays showed that most PDMSCs grown on a hyaluronan-coated surface duplicated during cultivation indicating that the hyaluronan-coated surface did not inhibit PDMSCs from entering the cell cycle. Mitotic synchronization showed that the G1-phase transit was prolonged in PDMSCs growing on a hyaluronan-coated surface. Increases in p27Kip1 and p130 were the crucial factors that allowed hyaluronan to lengthen the G1 phase. Thus, hyaluronan might be a promising candidate for maintaining stem cells in slow-cycling mode by prolonging their G1-phase transit. This work was supported by research grant NSC95-2745-B-006-003-MY2 from the National Science Council, Taiwan, and by Landmark Project Grant A25, funded by the Taiwan Ministry of Education, from National Cheng Kung University.  相似文献   

13.
Several reports have shown that a number of cytokines such as tumor necrosis-α (TNF-α), interferon-γ (IFN-γ), and interleukin-β (IL-1β) are capable to induce hyaluronan sinthases (HASs) mRNA expression in different cell culture types. The obvious consequence of this stimulation is a marked increment in hyaluronan (HA) production. It has been also reported that oxidative stress, by itself, may increase HA levels. The aim of this study was to evaluate how TNF-α, IFN-γ,IL−1β, and exposition to oxidative stress may modulate HAS activities in normal human skin fibroblasts. Moreover, the effects on HAS mRNA expression of the concomitant treatment with cytokines and oxidants, and the HA concentrations after treatments, were studied. TNF-α, IFN-γ, and IL-1β were added to normal or/and exposed to FeSO4 plus ascorbate fibroblast cultures and HAS1, HAS2 and HAS3 mRNA content, by PCR-real time, was assayed 3,h later. HA levels were also evaluated after 24,h incubation. The treatment of fibroblasts with cytokines up-regulated HASs gene expression and increased HA production. IL-1β induced HAS mRNA expression and HA production more efficiently than TNF-α and IFN-γ. The exposition of the fibroblasts with the oxidant system markedly increased HAS activities while slightly HA production. The concomitant treatment of cells with the cytokines and the oxidant was able to further enhance, in a dose dependent way, with synergistic effect on HAS mRNA expression. On the contrary HA levels resulted unaffected by the concomitant treatment, and resemble those obtained with the exposure to FeSO4 plus ascorbate only. This lack in HA production could be due to the deleterious action of free radicals on the HA synthesis.  相似文献   

14.
Phosphorylation of high mobility group protein 1 (HMG1) by casein kinase I (CK-I) and potent effectors (inhibitors and activators) of this phosphorylation were investigated in vitro. We found that (i) CK-I phosphorylates specifically threonine residues on HMG1 when incubated with cholesterol-3-sulfate (CH-3S), but no phosphorylation of HMG1 is detected in the presence of other cholesterol related compounds or their sulfated derivatives; (ii) this phosphorylation is selectively inhibited by heparin, but stimulated significantly by 3',4',7-trihydroxy-isofavone at low doses (0.1-3 microM); and (iii) CH-3S directly induces a drastic conformational change in HMG1. The latter finding provides a mechanism to explain how CH-3S alone can induce the phosphorylation of HMG1 by CK-I in vitro.  相似文献   

15.
Isolated rat bone marrow stromal cells cultured in osteogenic medium in which the normal 5.6 mm glucose is changed to hyperglycemic 25.6 mm glucose greatly increase lipid formation between 21–31 days of culture that is associated with decreased biomineralization, up-regulate expression of cyclin D3 and two adipogenic markers (CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ) within 5 days of culture, increase neutral and polar lipid synthesis within 5 days of culture, and form a monocyte-adhesive hyaluronan matrix through an endoplasmic reticulum stress-induced autophagic mechanism. Evidence is also provided that, by 4 weeks after diabetes onset in the streptozotocin-induced diabetic rat model, there is a large loss of trabecular bone mineral density without apparent proportional changes in underlying collagen matrices, a large accumulation of a hyaluronan matrix within the trabecular bone marrow, and adipocytes and macrophages embedded in this hyaluronan matrix. These results support the hypothesis that hyperglycemia in bone marrow diverts dividing osteoblastic precursor cells (bone marrow stromal cells) to a metabolically stressed adipogenic pathway that induces synthesis of a hyaluronan matrix that recruits inflammatory cells and establishes a chronic inflammatory process that demineralizes trabecular cancellous bone.  相似文献   

16.
In the conventional paradigm of humoral immunity, B cells recognize their cognate antigen target in its native form. However, it is well known that relatively unstable peptides bearing only partial structural resemblance to the native protein can trigger antibodies recognizing higher-order structures found in the native protein. On the basis of sound thermodynamic principles, this work reveals that stability of immunogenic proteinlike motifs is a critical parameter rationalizing the diverse humoral immune responses induced by different linear peptide epitopes. In this paradigm, peptides with a minimal amount of stability (ΔGX<0 kcal/mol) around a proteinlike motif (X) are capable of inducing antibodies with similar affinity for both peptide and native protein, more weakly stable peptides (ΔGX>0 kcal/mol) trigger antibodies recognizing full protein but not peptide, and unstable peptides (ΔGX>8 kcal/mol) fail to generate antibodies against either peptide or protein. Immunization experiments involving peptides derived from the autoantigen histidyl-tRNA synthetase verify that selected peptides with varying relative stabilities predicted by molecular dynamics simulations induce antibody responses consistent with this theory. Collectively, these studies provide insight pertinent to the structural basis of immunogenicity and, at the same time, validate this form of thermodynamic and molecular modeling as an approach to probe the development/evolution of humoral immune responses.  相似文献   

17.
Hypochlorous acid (HOCl), produced in inflammatory conditions by the enzyme myeloperoxidase, and its anion hypochlorite (OCl) exist in vivo at almost equal concentrations. Their reactions with hyaluronan and heparin (as a model for sulfated glycosaminoglycans in the extracellular matrix) have been studied as a function of pH. The major product in these reactions is the chloramide derivative of the glycosaminoglycans. Spectral, chloramide yield, and kinetic measurements show sharply contrasting behavior of heparin and hyaluronan and the data allow the calculation of second-order rate constants for the reactions of both HOCl and OCl for all reaction pathways leading to the formation of chloramides and also oxidation products. By comparison with hyaluronan, it can be demonstrated that both N-sulfate and O-sulfate groups in heparin influence the proportions of these pathways in this glycosaminoglycan. Evidence is also given for further oxidation pathways involving a reaction of HOCl with the chloramide product of hyaluronan but not with heparin. The significance of these results for the mechanisms of inflammation, particularly for fragmentation of extracellular matrix glycosaminoglycans, is discussed.  相似文献   

18.
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.  相似文献   

19.
《Cellular signalling》2014,26(3):611-618
Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that binds to a family of G protein-coupled receptors (GPCRs), termed S1P1–S1P5. Our previous study has reported that S1P induces autophagy in human prostate cancer PC-3 cell. In addition, S1P-induced autophagy plays a prosurvival role in PC-3 cells. Accumulating evidence has shown that the autophagy responses triggered by ER stress signaling have cytoprotective effects. Thus, we attempted to investigate whether S1P-induced autophagy is a result of triggering ER stress in PC-3 cells. By monitoring XBP-1 mRNA splicing, a characteristic of ER stress, we demonstrate that S1P triggers ER stress in a concentration-dependent and time-dependent manner. Moreover, DiH S1P, a membrane-nonpermeable S1P analog without intracellular effects also enhances ER stress. Meanwhile, we also show that S1P5 is required for S1P-induced ER stress by using RNA interference experiments. Furthermore, signaling analyses revealed that PI3K, PLC, and ROS production were involved in S1P's effects on ER stress induction. On the other hand, knockdown of XBP-1 abolished S1P-induced autophagy. In summary, our results demonstrate for the first time that the extracellular S1P-triggered ER stress is responsible for autophagy induction in PC-3 cells.  相似文献   

20.
Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of self-renewing capacity in the stem cell compartments of diverse epithelial structures; however, the underlying cellular and molecular mechanisms remain incompletely defined. Cellular quiescence is a common feature of adult stem cells that may account for their ability to retain long-term replicative capacity while simultaneously limiting cellular division. Similarly, quiescence within tumor stem cell populations may represent a mechanism by which these populations evade cytotoxic therapy and initiate tumor recurrence. Here, we present evidence that ΔNp63α, the predominant TP63 isoform in the regenerative compartment of diverse epithelial structuresm, promotes cellular quiescence via activation of Notch signaling. In HC11 cells, ectopic ΔNp63α mediates a proliferative arrest in the 2N state coincident with reduced RNA synthesis characteristic of cellular quiescence. Additionally, ΔNp63α and other quiescence-inducing stimuli enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to cause accumulation in G0/G1 and increased expression of two genes associated with quiescence, Hes1 and Mxi1. Pharmacologic inhibition of Notch signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. These studies identify a novel mechanism by which ΔNp63α preserves long-term replicative capacity by promoting cellular quiescence and identify the Notch signaling pathway as a mediator of multiple quiescence-inducing stimuli, including ΔNp63α expression.Key words: p63, Notch, quiescence, stem cell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号