首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Streptococcus pyogenes is a major human pathogen worldwide, responsible for both local and systemic infections. These bacteria express the subtilisin-like protease SpyCEP which cleaves human IL-8 and related chemokines. We show that localization of SpyCEP is growth-phase and strain dependent. Significant shedding was observed only in a strain naturally overexpressing SpyCEP, and shedding was not dependent on SpyCEP autoproteolytic activity. Surface-bound SpyCEP in two different strains was capable of cleaving IL-8. To investigate SpyCEP action in vivo, we adapted the mouse air pouch model of infection for parallel quantification of bacterial growth, host immune cell recruitment and chemokine levels in situ. In response to infection, the predominant cells recruited were neutrophils, monocytes and eosinophils. Concomitantly, the chemokines KC, LIX, and MIP-2 in situ were drastically increased in mice infected with the SpyCEP knockout strain, and growth of this mutant strain was reduced compared to the wild type. SpyCEP has been described as a potential vaccine candidate against S. pyogenes, and we showed that surface-associated SpyCEP was recognized by specific antibodies. In vitro, such antibodies also counteracted the inhibitory effects of SpyCEP on chemokine mediated PMN recruitment. Thus, α-SpyCEP antibodies may benefit the host both directly by enabling opsonophagocytosis, and indirectly, by neutralizing an important virulence factor. The animal model we employed shows promise for broad application in the study of bacterial pathogenesis.  相似文献   

5.
6.
7.
8.
9.
Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival.  相似文献   

10.
11.
12.
13.
人巨细胞病毒(HCMV)是疱疹病毒科中最大的病毒,结构复杂,其感染在人群中非常普遍,近年来免疫妥协(immunocompromised)群体尤其是移植群体中的HCMV潜伏感染和激活感染越来越受到临床重视。本文就HCMV的感染与免疫、HCMV的致病机制、宿主的抗感染与免疫、HCMV的免疫逃逸、HCMV的潜伏与激活及HCMV相关研究的困境与展望近年来此方面研究新进展作一简要综述。  相似文献   

14.
人巨细胞病毒(HCMV)是疱疹病毒科中最大的病毒,结构复杂,其感染在人群中非常普遍,近年来免疫妥协(immunocompmmised)群体尤其是移植群体中的HCMV潜伏感染和激活感染越来越受到临床重视。本文就HCMV的感染与免疫、HCMV的致病机制、宿主的抗感染与免疫、HCMV的免疫逃逸、HCMV的潜伏与激活及HcMV相关研究的困境与展望近年来此方面研究新进辰作一简要综述。  相似文献   

15.
16.
17.
In patients with impaired cell-mediated immune responses (e.g., lung transplant recipients and AIDS patients), cytomegalovirus (CMV) infection causes severe disease such as pneumonitis. However, although immunocompetency in the host can protect from CMV disease, the virus persists by evading the host immune defenses. A model of CMV infection of the endothelium has been developed in which inflammatory stimuli, such as the CC chemokine RANTES, bind to the endothelial cell surface, stimulating calcium flux during late times of CMV infection. At 96 h postinfection, CMV-infected cells express mRNA of the CMV-encoded CC chemokine receptor US28 but do not express mRNA of other CC chemokine receptors that bind RANTES (CCR1, CCR4, CCR5). Cloning and stable expression of the receptor CMV US28 in human kidney epithelial cells (293 cells) with and without the heterotrimeric G protein α16 indicated that CMV US28 couples to both Gαi and Gα16 proteins to activate calcium flux in response to the chemokines RANTES and MCP-3. Furthermore, cells that coexpress US28 and Gα16 responded to RANTES stimulation with activation of extracellular signal-regulated kinase, which could be attributed, in part, to specific Gα16 coupling. Thus, through expression of the CC chemokine receptor US28, CMV may utilize resident G proteins of the infected cell to manipulate cellular responses stimulated by chemokines.  相似文献   

18.
The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b'' sequences of the Toledo genome, targeted the 3′-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV.  相似文献   

19.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

20.
用间接酶联免疫吸附实验(ELISA)对新近诊断的179例血液病患者血清巨细胞病毒(HCMV)IgM和IgA抗体进行了检测。阳性率分别为11,17%11,73%,明显高于对照人群(4,76%和3,97%),提示血液病患者由于免疫功能下降,易于发生HCMV活动性感染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号