首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveRecent evidence has suggested that AHNAK expression is altered in obesity, although its role in adipose tissue development remains unclear. The objective of this study was to determine the molecular mechanism by which Ahnak influences adipogenesis and glucose homeostasis.DesignWe investigated the in vitro role of AHNAK in adipogenesis using adipose-derived mesenchymal stem cells (ADSCs) and C3H10T1/2 cells. AHNAK-KO male mice were fed a high-fat diet (HFD; 60% calories from fat) and examined for glucose and insulin tolerances, for body fat compositions, and by hyperinsulinemic-euglycemic clamping. Energy expenditures were assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in white or brown adipose tissues.ResultsAdipogenesis in ADSCs was impaired in AHNAK-KO mice. The loss of AHNAK led to decreased BMP4/SMAD1 signaling, resulting in the downregulation of key regulators of adipocyte differentiation (P<0.05). AHNAK directly interacted with SMAD1 on the Pparγ2 promoter. Concomitantly, HFD-fed AHNAK-KO mice displayed reduced hepatosteatosis and improved metabolic profiles, including improved glucose tolerance (P<0.001), enhanced insulin sensitivity (P<0.001), and increased energy expenditure (P<0.05), without undergoing alterations in food intake and physical activity.ConclusionAHNAK plays a crucial role in body fat accumulation by regulating adipose tissue development via interaction with the SMAD1 protein and can be involved in metabolic homeostasis.  相似文献   

2.
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.  相似文献   

3.

Background

Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21) activity in High-fat diet (HFD) fed ApoE−/− mice with adiponectin (Acrp30) knockdown.

Method

HFD-fed ApoE−/− mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes.

Results

The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1) and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals.

Conclusion

These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be partly mediated via increased FGF-21 and its receptors action.  相似文献   

4.
Objective: Mice divergently selected for high or low food intake (FI) at constant body mass differ in their resting metabolic rates (RMRs). Low‐intake individuals (ML) have significantly lower RMR (by 30%) compared with those from the high‐intake line (MH). We hypothesized that MLs might, therefore, be more likely to increase their body and fat mass when exposed to a high‐fat diet (HFD). Research Methods and Procedures: We exposed both lines to a diet with 44.9% calories from fat for 3 weeks while measuring FI, fecal production, and body mass and then returned the mice to standard chow. Results: When exposed to the HFD, both lines significantly decreased their FI (MH, 40% to 45%; ML, 31% to 35%). This decrease occurred simultaneously with a significant increase in apparent energy absorption efficiency (AEAE). When returned to chow, FI and AEAE returned to the levels observed prior to HFD exposure. Because of the adjustments in FI, the absorbed energy was maintained in the MLs and, thus, body mass remained constant. The MH individuals overcompensated for the elevated energy content and AEAE on the HFD and, therefore, absorbed lower energy than when feeding on chow. These mice also did not significantly change their body mass when on the HFD and must have made adjustments in their energy expenditures. Both lines and both sexes increased in fat content on the HFD, but these effects were not different between lines or sexes. Discussion: We found no support for the hypothesis that mice with low RMRs were more susceptible to weight gain when fed the HFD.  相似文献   

5.
6.
7.
8.
9.
Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose output was significantly increased. Indomethacin had no effect on adipose tissue mass, glucose tolerance, or GSIS when included in a regular diet. Indomethacin administration to obese mice did not reduce adipose tissue mass, and the compensatory increase in GSIS observed in obese mice was not affected by treatment with indomethacin. We demonstrate that indomethacin did not inhibit GSIS per se, but activation of GPR40 in the presence of indomethacin inhibited glucose-dependent insulin secretion in MIN6 cells. We conclude that constitutive high hepatic glucose output combined with impaired GSIS in response to activation of GPR40-dependent signaling in the HF/HS+INDO-fed mice contributed to the impaired glucose clearance during a glucose challenge and that the resulting lower levels of plasma insulin prevented the obesogenic action of the HF/HS diet.  相似文献   

10.

Aims

To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring.

Methods

Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat) or standard chow (C, 21% kcal fat) pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF) which were studied at 15 or 30 weeks of age.

Results

There were significant effects of maternal diet on offspring body weight (p<0.004), systolic blood pressure (p = 0.026) and endothelium-dependent relaxation to ACh (p = 0.004) and NO production (p = 0.005) measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001) and reduce endothelium-dependent relaxation (p = 0.022) and ACh-mediated NO production (p = 0.007). There was also a significant impact of age (p<0.005). Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling.

Conclusions

Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.  相似文献   

11.

Aim

We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases.

Methods

The experimental animals (Spague-Dawley rats) were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1) standard control diet (SC), and 2) a high sucrose and high fat diet (HSHF). The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization.

Results

Typical metabolic syndrome (MS), non-alcoholic fatty liver disease (NAFLD), and type II diabetes (T2DM) were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR). At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis.

Conclusions

This work demonstrated the following: 1) a characteristic rat model of metabolic syndrome (MS) can be induced by a high sucrose and high fat diet, 2) this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3) intestinal endotoxemia (IETM) may play an important role in the pathogenesis of MS and related diseases, such as NAFLD and T2DM.  相似文献   

12.
Dietary methionine restriction (MR) extends lifespan, an effect associated with reduction of body weight gain, and improvement of insulin sensitivity in mice and rats as a result of metabolic adaptations in liver, adipose tissue and skeletal muscle. To test whether MR confers resistance to adiposity and insulin resistance, C57BL/6J mice were fed a high fat diet (HFD) containing either 0.86% methionine (control fed; CF) or 0.12% methionine (methionine-restricted; MR). MR mice on HFD had lower body weight gain despite increased food intake and absorption efficiency compared to their CF counterparts. MR mice on HFD were more glucose tolerant and insulin sensitive with reduced accumulation of hepatic triglycerides. In plasma, MR mice on HFD had higher levels of adiponectin and FGF21 while leptin and IGF-1 levels were reduced. Hepatic gene expression showed the downregulation of Scd1 while Pparg, Atgl, Cd36, Jak2 and Fgf21 were upregulated in MR mice on HFD. Restriction of growth rate in MR mice on HFD was also associated with lower bone mass and increased plasma levels of the collagen degradation marker C-terminal telopeptide of type 1 collagen (CTX-1). It is concluded that MR mice on HFD are metabolically healthy compared to CF mice on HFD but have decreased bone mass. These effects could be associated with the observed increase in FGF21 levels.  相似文献   

13.
AMP-activated protein kinase (AMPK) plays an important role in insulin resistance, which is characterized by the impairment of the insulin-Akt signaling pathway. However, the time course of the decrease in AMPK and Akt phosphorylation in the liver during the development of obesity and insulin resistance caused by feeding a high fat diet (HFD) remains controversial. Moreover, it is unclear whether the impairment of AMPK and Akt signaling pathways is reversible when changing from a HFD to a standard diet (SD). Male ddY mice were fed the SD or HFD for 3 to 28 days, or fed the HFD for 14 days, followed by the SD for 14 days. We examined the time course of the expression and phosphorylation levels of AMPK and Akt in the liver by immunoblotting. After 3 days of feeding on the HFD, mice gained body weight, resulting in an increased oil red O staining, indicative of hepatic lipid accumulation, and significantly decreased AMPK phosphorylation, in comparison with mice fed the SD. After 14 days on the HFD, systemic insulin resistance occurred and Akt phosphorylation significantly decreased. Subsequently, a change from the HFD to SD for 3 days, after 14 days on the HFD, ameliorated the impairment of AMPK and Akt phosphorylation and systemic insulin resistance. Our findings indicate that AMPK phosphorylation decreases early upon feeding a HFD and emphasizes the importance of prompt lifestyle modification for decreasing the risk of developing diabetes.  相似文献   

14.
15.
Oxidative phosphorylation in mitochondria is responsible for 90% of ATP synthesis in most cells. This essential housekeeping function is mediated by nuclear and mitochondrial genes encoding subunits of complex I to V of the respiratory chain. Although complex IV is the best studied of these complexes, the exact function of the striated muscle-specific subunit COX6A2 is still poorly understood. In this study, we show that Cox6a2-deficient mice are protected against high-fat diet-induced obesity, insulin resistance and glucose intolerance. This phenotype results from elevated energy expenditure and a skeletal muscle fiber type switch towards more oxidative fibers. At the molecular level we observe increased formation of reactive oxygen species, constitutive activation of AMP-activated protein kinase, and enhanced expression of uncoupling proteins. Our data indicate that COX6A2 is a regulator of respiratory uncoupling in muscle and we demonstrate that a novel and direct link exists between muscle respiratory chain activity and diet-induced obesity/insulin resistance.  相似文献   

16.
脂肪酰基辅酶A氧化酶1(acyl-coenzyme A oxidase 1,Acox1)缺失可通过内源性配体激活过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor-α,PPARα)及其调控的信号通路,从而减轻肥胖基因leptin突变型(ob/ob)小鼠的肥胖和脂肪肝症状,但提高了其肝癌发生率.为进一步研究PPARα信号通路在高脂日粮和leptin缺失诱导的脂肪肝形成过程中的作用,本研究以野生型、Acox1-/-、ob/ob和Acox1Δob/ob小鼠为模型,用正常日粮或60%高脂日粮饲喂10个月.结果显示,正常日粮或高脂日粮饲喂情况下,Acox1-/-和Acox1Δob/ob小鼠的体重、白色脂肪细胞体积、棕色脂肪组织含量及肝脏脂肪含量均分别显著低于WT和ob/ob小鼠.溴化脱氧尿嘧啶核苷(Brdurd)及烯酰辅酶A水合酶(L-PBE)免疫组化染色结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内肝细胞增殖及L-PBE活性、肝脏重量及其占体重的百分比均显著高于WT和ob/ob小鼠.正常日粮饲喂的WT、Acox1-/-、ob/ob和Acox1Δob/ob小鼠肝癌发生率分别为0%、100%、0%和4%,高脂日粮饲喂后,其肝癌发生率分别为0%、100%、2.9%和100%.Q-PCR结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内L-PBE、Cyp4a3、Akr1b10、ap2等基因的表达水平显著高于WT和ob/ob小鼠.综上所述,PPARα信号通路激活可以抵抗高脂日粮和leptin缺失诱导的肥胖和脂肪肝,但脂质过氧化反应可能通过Nrf2-Akr1b10信号通路促进了肝癌发生.  相似文献   

17.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

18.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

19.
Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.  相似文献   

20.
We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.Several heavy metals are essential during plant growth and development, but their excess can easily lead to toxic effects. Contamination of soils with heavy metals, either by natural causes or due to pollution, often has pronounced effects on the vegetation, resulting in the appearance of metallophytes, heavy-metal-tolerant plants. The precise mechanisms of uptake, transport, and accumulation of heavy metals in plants are poorly understood, but several genes likely to be involved in these processes have been described. Recently, a family of ZIP genes that are expressed in roots upon Zn deficiency was isolated from Arabidopsis (Grotz et al., 1998). The proteins encoded by the ZIP genes have eight predicted TM regions and a high degree of similarity to the ZRT genes from yeast that are involved in Zn uptake. Expression of the ZIP genes in yeast conferred Zn-uptake activities to these cells, demonstrating that they are probably functional homologs of the yeast ZRT genes (Grotz et al., 1998). The only other metal-transporting protein recently identified in plants belongs to the large family of cation-transporting P-type ATPases (Tabata et al., 1997), but these proteins are structurally very different from the metal-transporting proteins mentioned above.Recent data have provided more insight into the mechanisms of heavy-metal tolerance. Metallophytes often exhibit tolerance to several different heavy metals, but all of these metals need not be present at toxic levels in their habitat (Schat and ten Bookum, 1992a; Schat and Vooijs, 1997, and refs. therein; Schat and Verkleij, 1998). Although such a feature is suggestive of a general mechanism of heavy-metal tolerance, recent genetic evidence has shown that a number of different mechanisms must exist, each with its own metal specificity (Schat and Vooijs, 1997). In Arabidopsis, a plant species with a typical level of tolerance to heavy metals, it has been demonstrated that the Cd-sensitive mutants cad1 and cad2 are defective in the synthesis of the metal-binding compound phytochelatin (Howden et al., 1995). cad1 plants were only slightly more sensitive to Cu and Zn, indicating that phytochelatin-mediated detoxification is not sufficient for Cu and Zn detoxification (Howden et al., 1995b). Metallothioneins appear to be of major importance for constitutive Cu tolerance in Arabidopsis (Zhou and Goldsbrough, 1994).Aside from complexation of heavy metals by heavy-metal-binding proteins, there is evidence that transport-mediated sequestration can contribute to heavy-metal tolerance. In the Zn-tolerant plant Silene vulgaris it was shown that Zn transport across the tonoplast was about 2.5 times higher than in Zn-sensitive plants of the same species (Verkleij et al., 1998). The ZRC1 gene from the yeast Saccharomyces cerevisiae encodes a protein with six putative TM regions; when overexpressed, this gene confers elevated resistance to Zn and Cd (Kamizono et al., 1989). A structurally very similar gene, COT1, was later found to be involved in Co accumulation in yeast (Conklin et al., 1992).Recently, several genes homologous to ZRC1 and COT1 have been described in mammalian cells. The first gene discovered, ZnT-1 (Zn transporter 1), was cloned by virtue of its ability to complement a mutated, Zn-sensitive cell line (Palmiter and Finley, 1995). Subsequently, ZnT-2 (Palmiter et al., 1996), ZnT-3 (Wenzel et al., 1997), and ZnT-4 (Huang and Gitschier, 1997) have been described. The ZnT-1 protein most likely transports Zn out of the cells (Palmiter and Finley, 1995), whereas ZnT-2 confers Zn resistance by facilitating vesicular sequestration (Palmiter et al., 1996a). Other proteins related to yeast ZRC1/COT1 and mammalian ZnT have been found in several bacteria; for example, the CzcD protein from Alcaligenes eutrophus might be involved in Zn efflux (Nies, 1992).A family of proteins with six TM regions thus seems to be involved in the transport of heavy metals, mostly Zn, thereby conferring enhanced resistance toward these metals. To our knowledge, no plant homologs of this rather widespread gene family have yet been described. In this paper we describe an Arabidopsis cDNA clone encoding a protein closely related to the ZnT family of mammalian Zn transporters, demonstrating that plants do contain these types of genes. Experiments were performed to analyze the functional properties of the gene. We demonstrate that overexpression of the complete protein-coding domain results in enhanced Zn resistance and increased accumulation of Zn in the root. The relevance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号