首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cyclic nucleotide phosphodiesterase secreted by Physarum polycephalum plasmodium into extracellular medium has been partially purified by DEAE cellulose chromatography, ultrafiltration, and HPLC. The results obtained by gel filtration, HPLC, electrophoresis, and isoelectric focusing suggest that, the native enzyme in solution is a monomer with a molecular mass of about 90 kDa and pI in the range 3.6 - 4.0. The Km values were estimated to be about 0.9 mM and 7.7 mM, respectively, and Vm for both substrates were similar (up to several thousand micromoles of cAMP hydrolyzed/hour per mg of enzyme). The partially purified enzyme was shown to be extremely stable. It did not lose the activity after heat treatment at 100 degrees C during 30 min. The enzyme was active in the presence of 1% SDS, but it was fully inactivated under the same conditions in the presence of beta-mercaptoethanol. The properties of the phosphodiesterase from Physarum polycephalum are discussed.  相似文献   

2.
The Dictyostelium discoideum membrane-bound and extracellular cyclic nucleotide phosphodiesterases (EC 3.1.4.17) shear several properties including the ability to react with a specific glycoprotein inhibitor and small inhibitory molecules. We have partialy purified the membrane-bound enzyme and compared its properties to those of the extracellular form. The kinetic properties of the two forms were similar except that, while associated with membrane particles, the membrane-bound form exhibited non-linear kinetics when assayed ove a broad substrate range. The isoelectric point of the membrane-bound phosphodiesterase was identical to that of the extracellular enzyme when isoelectrofocusing was done in the presence of 6 M urea. The molecular weights of membrane-bound and extracellular enzyme, determined by gel filtration, were the same following isoelectrofocusing in the presence of 6 M urea. When precipitated with an antiserum prepared against purified extracellular phosphodiesterase, the partially purified membrane-bound enzyme preparation was shown to contain a Mr 50 000 polypeptide comigrating with the extracellular enzyme during SDS polyacrylamide gel electrophoresis. When the iodinated extracellular enzyme and the iodinated Mr 50 000 polypeptide from membrane-bound enzyme were subjected to partial proteolytic digestion, similar profiles were obtained indicating extensive regions of homology.  相似文献   

3.
Lipoxygenase activity was demonstrated in partially purified preparations from small faba beans. The enzyme was shown to possess a pH optimum of 6·5 and was inactivated by exposure to 70° for 15 min. The Km value for linoleic acid was calculated to be 0·57 mM. Ammonium sulphate fractionation yielded two highly active preparations, which were both active towards linoleic and linolenic acids. Neither fraction was inhibited by either cyanide or p-chloromercuribenzoate. The two fractions showed markedly differing responses to calcium ions, suggesting the presence of two lipoxygenases in faba beans. Activation of the enzyme by calcium ions was eliminated by the addition of EDTA.  相似文献   

4.
Satoh S  Yang SF 《Plant physiology》1988,88(1):109-114
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase was partially purified from the homogenate of wounded tomato (Lycoperiscon esculentum Mill.) pericarp tissue by (NH4)2SO4 fractionation followed by conventional column chromatography with diethylaminoethyl-Sepharose, Sephadex G-150, Affi-Gel blue and hydroxylapatite. The partially purified ACC synthase preparation attained a specific activity of about 12,000 nmoles per hour per milligram protein. Employing this enzyme preparation, we confirmed that the ACC synthase was inactivated by its substrate, S-adenosyl-l-methionine (SAM), during its catalytic action. When the partially purified enzyme preparation was incubated with [3,4-14C]SAM and the resulting proteins were analyzed by sodium dodecyl sulfate-gel electrophoresis, only one radioactive protein band was observed. This protein was thought to be ACC synthase based on its molecular mass of 50 kD and on the fact that it was specifically bound to a monoclonal antibody against ACC synthase (AB Bleecker et al. 1986 Proc Natl Acad Sci USA 83, 7755-7759). These results suggest that the substrate SAM acts as an enzyme-activated inactivator of ACC synthase by covalently linking a fragment of SAM molecule to the active site of ACC synthase, resulting in the inactivation of the enzyme.  相似文献   

5.
D.K. Srivastava  L.E. Anderson 《BBA》1983,724(3):359-369
Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP oxidoreductase, EC 1.1.1.49) has been purified to electrophoretic homogeneity from pea chloroplasts. The enzyme, which has a Stokes radius of 52 Å, is a tetramer made up of four 56000 Da monomers. The pH optimum is around 8.2. The enzyme is absolutely specific for NADP. The apparent Km(NADP) is 2.4 ± 0.1 μM. NADPH inhibition of the enzyme is competitive with respect to NADP (mean Ki, 18 ± 5 μM) and is mixed (Kp >Km, Vmax >Vp) with respect to glucose 6-phosphate (mean crossover point, 0.5 ± 0.1 mM). The apparent Km(glucose 6-phosphate) is 0.37 ± 0.01 mM. The purified enzyme is inactivated in the light in the presence of dilute stroma and washed thylakoids, and by dithiothreitol. Enzyme which has been partially inactivated by treatment with dithiothreitol can be further inactivated in the light in the presence of dilute stroma and washed thylakoids and reactivated in the dark, but only to the extent of the reverse of light inactivation. Dithiothreitol-inactivated enzyme is not reactivated further by addition of crude stroma or oxidized thioredoxin. Dithiothreitol-dependent inactivation of the enzyme follows pseudo-first-order kinetics and shows rate saturation. The enzyme which has been partially inactivated by treatment with dithiothreitol does not differ from the untreated control with respect to thermal and tryptic inactivation. However, enzyme which has been partially light inactivated shows different thermal and tryptic inactivation patterns as compared to the dark control. These observations suggest that the changes in the enzyme brought about by light modulation are not necessarily identical with those brought about by dithiothreitol inactivation.  相似文献   

6.
An inducible l-mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of l-mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with l-mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10?4, 1.9 × 10?4, and 4.7 × 10?5m, respectively. The enzyme is very specific for l-mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.  相似文献   

7.
An inactivated nitrate reductase (EC 1.6.6.1) formed in vivo by the green alga Chlorella fusca Shihira and Kraus is shown to be a cyanide complex. The partially purified inactive enzyme releases 0.048 nmol of HCN per unit of enzyme activated. This compares with 0.066 nmol of HCN liberated in similar previous measurements with the inactivated enzyme from Chlorella vulgaris. The nitrate reductase from C. fusca has been purified to a level of 67 mol nitrate reduced per min per mg enzyme. It contains a cytochrome b557, at a level 1.9-fold higher per unit of active enzyme, than the nitrate reductase from C. vulgaris.Abbreviations FAD flavin-adenine dinucleotide - NADH nicotineamide-adenine-dinucleotide (reduced)  相似文献   

8.
1. A low-molecular-weight activator of 5-aminolaevulinate synthetase was detected in extracts of Rhodopseudomonas spheroides. The compound activates the enzyme extracted from oxygenated semi-anaerobically grown organisms by a factor of 6–8. 2. The activator was extensively purified, but owing to the exceedingly small amounts that could be extracted in the active form its structure was not determined. 3. The activator contains an acetylatable amino group; it is more stable at acid than at alkaline pH values; it is stable to treatment with I2–KI or potassium ferricyanide, but irreversibly inactivated by Na2S2O4 or NaBH4. 4. The chromatographic, electrophoretic, chemical and stability properties of the activator are similar to those of pteridines; purified activator preparations contain pteridines, as shown by their fluorescence spectrum. This does not, however, constitute an identification of the activator. 5. The activator enhances the activity of crude and partially purified enzyme and does not appear to require other endogenous factors or a supply of air to produce activation. Activation of the purified enzyme, however, requires the presence of either pyridoxal phosphate or sodium succinate. In the absence of both these factors the activator produces a time- and temperature-dependent decay of activity.  相似文献   

9.
Soll J 《Plant physiology》1988,87(4):898-903
An ATP-dependent protein kinase was partially purified from isolated outer envelope membranes of pea (Pisum sativum L., Progress No. 9) chloroplasts. The purified kinase had a molecular weight of 70 kilodaltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was of the cyclic nucleotide and Ca2+, calmodulin-independent type. The purification involved the detergent solubilization of purified outer envelopes by 0.5% cholate and 1% octylglycoside, followed by centrifugation on a linear 6 to 25% sucrose gradient. Active enzyme fractions were further purified by affinity chromatography on histone III-S Sepharose 4B and ion exchange chromatography on diethylaminoethyl cellulose. The protein kinase eluted at 100 millimolar and 50 millimolar NaCl, respectively. The protein kinase was essentially pure as judged by Western blot analysis. The enzyme has a KM of 450 micromolar for ATP and a Vmax of 25 picomoles of 32P incorporated into histone III-S per minute per microgram. Inhibition by ADP is competitive (Ki 150 micromolar).  相似文献   

10.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

11.
2-Hydroxyisonicotinate dehydrogenase from Mycobacterium sp. INA1 was purified 26-fold to apparent homogeneity. The enzyme is involved in isonicotinate degradation by Mycobacterium sp. INA1 and catalyzes the conversion of 2-hydroxyisonicotinate to 2,6-dihydroxypyridine-4-carboxylate. The purified protein exhibited a native molecular mass of 300 kDa and subunits of 97, 31 and 17 kDa, respectively, indicating an α2β2γ2 structure. The absorption spectrum of the homogeneous enzyme was characteristic for an iron/sulfur flavoprotein. 3.8 mol of iron, 3.7 mol of acid labile sulfur, 0.94 mol of FAD and 0.75 mol of molybdenum were determined per mol of protomer. The molybdenum cofactor was identified as molybdopterin cytosine dinucleotide. 2-Hydroxyisonicotinate dehydrogenase was inactivated in the presence of cyanide. According to these basic properties the protein seems to belong to the class of molybdo-iron/sulfur flavoproteins of the xanthine oxidase family.  相似文献   

12.
The acetyl-CoA:acetoacetate-CoA-transferase has been purified 36-fold to homogeneity from an acetoacetate degradation operon (ato) constitutive mutant of Escherichia coli. The enzyme has the following physical properties: Stokes radius, 40.5 Å; diffusion coefficient (D20,w), 5.32 × 10?7 cm s?1; sedimentation coefficient (s20,w), 5.38S; molecular weight, 97,000 and a frictional ratio (ff0) of 1.35. The enzyme is composed of two α subunits (Mr = 26,000) and two β subunits (Mr = 23,000). E. coli CoA-transferase contains six cysteine residues per mole of enzyme and no disulfide bonds. The native transferase reacts with 4 mol of p-chloromercuribenzoate per 97,000 g of enzyme. Two cysteine residues react rapidly with p-chloromercuribenzoate resulting in an 85% inactivation of enzyme activity. The reactivity of these two residues is enhanced at least fivefold in the presence of acetyl-CoA. Acetoacetate has no effect on the rate of reaction of p-chloromercuribenzoate with the enzyme. E. coli CoA-transferase is partially inactivated by acyl-CoA substrates in the absence of carboxylic acid substrates, presumably as the result of a metal-catalyzed acylation of the ?-amino group of a lysine residue near the active site. The enzyme utilizes a variety of short chain acyl-CoA and carboxylic acid substrates but exhibits maximal activity with normal and 3-keto substrates.  相似文献   

13.
An improved assay method of a pseudomurein-degrading enzyme and its properties are described. The pseudomurein-degrading enzyme purified from Methanobacterium wolfei autolysate under an anoxic condition was assayed with the cell wall of Methanobacterium thermoautotrophicum as a substrate. By this improved method the enzyme activity was measured quantitatively and reproducibly. Moreover, the cell wall substrate can be stored in a freezer and used as needed, and the time required for an assay was as short as 1 h. The optimum pH and temperature of the enzyme was pH 6.8-7.4 and 75°C, respectively. Although the enzyme lost 50% of the activity upon heating at 75°C for 10 min in the absence of the cell wall substrate, it was more stable against heat inactivation in the presence of the substrate. Furthermore the inactivated enzyme recovered some of the activity by incubating with the substrate. Although the enzyme lost most of the activity under aerobic conditions, the activity was recovered under reducing conditions with Na2S·9H2O or DTT (dithiothreitol). The enzyme was also purified under aerobic conditions retaining the same specific activity as the anoxically purified enzyme. Using the partially purified enzyme the conditions preparing protoplasts of M. thermoautotrophicum was established.  相似文献   

14.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (K5) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate-similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reserved by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

15.
1. The rubber particles in Hevea brasiliensis latex have been partially purified by `washing' with buffer solution, and separated into active fractions of different particle size. 2. The enzyme responsible for incorporating isopentenyl pyrophosphate into rubber is distributed between the surface of the rubber particles and the aqueous serum phase of the latex. The enzyme at the surface can be removed or inactivated if the rubber particles are washed sufficiently with buffer solution. Enzyme in the serum phase can be concentrated by fractional precipitation with ammonium sulphate. 3. To incorporate isopentenyl pyrophosphate into rubber in vitro, active rubber particles are required as well as enzyme and soluble cofactors. The activity of the rubber particles per unit surface area increases with diminishing particle size.  相似文献   

16.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

17.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

18.
The kinetic properties of partially purified kidney cortex, liver and muscle isozymes of rat pyruvate kinase (EC 2.7.1.40) were compared. The liver and kidney cortex enzymes were isolated in forms which were homotropically activated by phosphoenolpyruvate and heterotropically activated by fructose-1,6-diphosphate. In the absence of added modulators, the liver enzyme was less active, but both isozymes were fruther inactivated by l-alanine, l-phenylalanine or ATP. The liver enzyme was relatively more sensitive to ATP, but less sensitive to l-phenylalanine. The muscle enzyme, on the other hand, was isolated in a more active form which was insensitive to ATP or l-alanine inhibition and of intermediate sensitivity to l-phenylalanine inhibition. In the presence of l-phenylalanine, muscle enzyme also underwent homotropic and heterotropic activation. Not any of the isozymes were inhibited by NADH.All three isozymes were activated by K+ or NH4+. NH4+ was the more effective activator for the kidney cortex or liver enzymes, in the former case because of a greater affinity, the latter because of a higher catalytic efficiency. Of the divalent cations tested only Mg2+ and Mn2+ activated. All three isozymes had lower maximal rates when activated by Mn2+, but this ion also consistently acted as a typical K-type activator.Evidence also was obtained which suggested that the change from one conformational form to another might take minutes and therefore, measured kinetic parameters could reflect conformational as well as catalytic phenomena. This observation, plus suggested independent subunit interactions, were considered to be evidence favoring a sequential rather than a concerted mechanism of conformational transition.  相似文献   

19.
The isoflavonoid phytoalexin pisatin is synthesized by Pisum sativum in response to microbial infection and certain other forms of stress. An enzyme which synthesizes pisatin by methylating the 3-hydroxyl of (+)6a-hydroxymaackiain (HMK) was extracted from CuCl2-stressed pea seedlings. The enzyme was enriched 370-fold by (NH4)2SO4 precipitation, DEAE chromatography, chromatofocusing, and hydrophobic interaction chromatography (HIC), to a specific activity of 8.2 microkatals per gram protein. Enzyme activity profiles from chromatofocusing and HIC columns suggested the presence of two isozymes, of pl 5.2 and 4.9. Nondenaturing gel filtration of the HIC-purified enzyme gave a single peak of activity at the same elution volume as BSA (66 kilodaltons); the active fractions showed two proteins upon SDS-PAGE, of Mr 66,000 and 43,000. The smaller protein was most abundant in chromatographic fractions containing peak enzyme activity throughout purification. In a partially purified preparation, this 43 kilodalton protein was the only one photoaffinity labelled by [3H]S-adenosyl-l-methionine. The purified enzyme preferred the (+) over the (−) stereoisomer of HMK and other pterocarpans; overall, (+)HMK was the best substrate. Km values were 2.3 micromolar for (+)HMK and 35 micromolar for S-adenosyl-l-methionine. The methyltransferase had a pH optimum of 7.9 and no apparent divalent cation requirement.  相似文献   

20.
Cyclic GMP phosphodiesterases from 100 00 × g rat liver supernatant were partially resolved by chromatography on DEAE-cellulose. Multiple forms of cyclic GMP phosphodiesterase(s) that were activated to different degrees by calcium plus a low molecular weight protein from rat liver and bovine brain supernantants, or by limited exposure to chymotrypsin, were identified. The cyclic GMP phosphodiesterase in some column fractions was activated over 10-fold by calcium plus activator or chymotrypsin. Activation by chymotrypsin was dependent both on the time of incubation with protease and its concentration. Prolonged exposure to chymotrypsin resulted in a decrease in s20,w by sucrose density gradient centrifugation. The chymotrypsin-treated enzyme was no longer activated by exposure to calcium plus activator. The calcium- and protein activator-stimulated enzyme was inactivated by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA). Exposure of this activated enzyme to chymotrypsin did not result in further activation, but the chymotrypsin-treated enzyme was no longer inhibited by EGTA. The apparently irreversible effects of chymotrypsin and the reversible effects of calcium plus activator on cyclic GMP hydrolysis by the phosphodiesterase over a wide range of cyclic GMP concentrations appeared to be identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号