首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT The sequence variation within the group I intron in five Naegleria spp. was studied and compared with the sequence variation within the flanking small subunit ribosomal DNA. Considerable sequence divergence was observed in the introns as well as in the rDNA. In the intron deletions and insertions are only detected in the sequence contributing to the secondary structure, not in the open reading frame. Most of the sequence variation is detected in the unpaired loops. In the case of nucleotide substitution in helices, compensating base pair changes were observed. The sequence variation does not induce variation in the secondary structure model. The phylogenetic tree based on the intron sequences is similar to the tree based on the flanking rDNA sequences. This observation indicates that the intron might have been acquired at an early stage in evolution, and lost in the majority of Naegleria spp.  相似文献   

2.

Background  

Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG). NaGIR2 is responsible for intron excision, exon ligation, and full-length intron RNA circularization, reactions typical for nuclear group I intron ribozymes. NaGIR1, however, is essential for NaHEG expression by generating the 5' end of the homing endonuclease messenger RNA. Interestingly, this unusual class of ribozyme adds a lariat-cap at the mRNA.  相似文献   

3.
4.
ABSTRACT. The small subunit ribosomal DNA (SSUrDNA) of all described Naegleria spp. was amplified by polymerase chain reaction with universal primers. In all strains of N. andersoni andersoni, N. andersoni jamiesoni, N. australiensis italica and two related strains, and one out of four clusters of N. gruberi , a band of approximately 3.3 kb was obtained. All other strains displayed a band with the expected DNA length of 2.0 kb. This means the former have a 1.3 kb intron in the SSUrDNA. Restriction analysis demonstrated that the intron is between two conserved Pst I sites at the 5' end of the SSUrDNA It also suggested the introns might not be identical in each species or subspecies. The Pst I fragment of SSUrDNA containing the 1.3 kb insert in N. andersoni andersoni was cloned and sequence. The 1,296-nucleotide insert is situated in helix 19 of the SSUrDNA, which is an area of conserved primary and secondary structure. Sequence and secondary structure analyses of the insert revealed it is a group I intron. This group I intron is very large and contains an open reading frame that could serve to encode a polypeptide of 139 amino acids in size.  相似文献   

5.
6.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron- strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron- alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron- rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis.  相似文献   

7.
Bidirectional effectors of a group I intron ribozyme.   总被引:3,自引:1,他引:3       下载免费PDF全文
The group I self-splicing introns found in many organisms are competitively inhibited by L-arginine. We have found that L-arginine acts stereoselectively on the Pc1. LSU nuclear group I intron of Pneumocystis carinii, competitively inhibiting the first (cleavage) step of the splicing reaction and stimulating the second (ligation) step. Stimulation of the second step is most clearly demonstrated in reactions whose first step is blocked after 15 min by addition of pentamidine. The guanidine moiety of arginine is required for both effects. L-Canavanine is a more potent inhibitor than L-arginine yet it fails to stimulate. L-Arginine derivatized on its carboxyl group as an amide, ester or peptide is more potent than L-arginine as a stimulator and inhibitor, with di-arginine amide and tri-arginine being the most potent effectors tested. The most potent peptides tested are 10,000 times as effective as L-arginine in inhibiting ribozyme activity, and nearly 400 times as effective as stimulators. Arginine and some of its derivatives apparently bind to site(s) on the ribozyme to alter its conformation to one more active in the second step of splicing while competing with guanosine substrate in the first step. This phenomenon indicates that ribozymes, like protein enzymes, can be inhibited or stimulated by non-substrate low molecular weight compounds, which suggests that such compounds may be developed as pharmacological agents acting on RNA targets.  相似文献   

8.
A comparative database of group I intron structures.   总被引:13,自引:3,他引:10       下载免费PDF全文
We have created a database of comparatively derived group I intron secondary structure diagrams. This collection currently contains a broad sampling of phylogenetically and structurally similar and diverse structures from over 200 publicly available intron sequences. As more group I introns are sequenced and added to the database, we anticipate minor refinements in these secondary structure diagrams. These diagrams are directly accessible by computer as well as from the authors.  相似文献   

9.
The Tetrahymena group I intron catalyzes self-splicing through two consecutive transesterification reactions, using a single guanosine-binding site (GBS). In this study, we constructed a model RNA that contains the GBS and a conserved guanosine nucleotide at the 3'-terminus of the intron (omegaG). We determined by NMR the solution structure of this model RNA, and revealed the guanosine binding mechanism of the group I intron. The G22 residue, corresponding to omegaG, participates in a base triple, G22 xx G3 x C12, hydrogen-bonding to the major groove edge of the Watson-Crick G3 x C12 pair. The G22 residue also interacts with A2, which is semi-conserved in all sequenced group I introns.  相似文献   

10.
11.
12.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron? strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron? alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron? rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis. © 1992 Wiley-Liss, Inc.  相似文献   

13.
14.
We have constructed all single base substitutions in almost all of the highly conserved residues of the Tetrahymena self-splicing intron. Mutation of highly conserved residues almost invariably leads to loss of enzymatic activity. In many cases, activity could be regained by making additional mutations that restored predicted base-pairings; these second site suppressors in general confirm the secondary structure derived from phylogenetic data. At several positions, our suppression data can be most readily explained by assuming non-Watson-Crick base-pairings. In addition to the requirements imposed by the secondary structure, the sequence of the intron is constrained by "negative interactions", the exclusion of particular nucleotide sequences that would form undesirable secondary structures. A comparison of genetic and phylogenetic data suggests sites that may be involved in tertiary structural interactions.  相似文献   

15.
Reverse splicing of group I introns is proposed to be a mechanism by which intron sequences are transferred to new genes. Integration of the Tetrahymena intron into the Escherichia coli 23S rRNA via reverse splicing depends on base pairing between the guide sequence of the intron and the target site. To investigate the substrate specificity of reverse splicing, the wild-type and 18 mutant introns with different guide sequences were expressed in E. coli. Amplification of intron-rRNA junctions by RT-PCR revealed partial reverse splicing at 69 sites and complete integration at one novel site in the 23S rRNA. Reverse splicing was not observed at some potential target sites, whereas other regions of the 23S rRNA were more reactive than expected. The results indicate that the frequency of reverse splicing is modulated by the structure of the rRNA. The intron is spliced 10-fold less efficiently in E. coli from a novel integration site (U2074) in domain V of the 23S rRNA than from a site homologous to the natural splice junction of the Tetrahymena 26S rRNA, suggesting that the forward reaction is less favored at this site.  相似文献   

16.
17.
18.
We have developed a quantitative substitution interference technique to examine the role of Pro-Rp oxygens in the phosphodiester backbone of RNA, using phosphorothioates as a structural probe. This approach is generally applicable to any reaction involving RNA in which the precursor and reaction products can be separated. We have applied the technique to identity structural requirements in the group I intron from Tetrahymena thermophila for catalysis of hydrolysis at the 3' splice site; 44 phosphate oxygens are important in 3' splice site hydrolysis. These include four or five oxygens previously observed to be important in exon ligation. Although phosphate oxygens having a functional significance can be found throughout the intron, the strongest phosphorothioate effects are closely associated with positions in the highly conserved intron core, which are likely to be involved in tertiary interactions, substrate recognition and catalysis.  相似文献   

19.
We have amplified the large subunit ribosomal DNA (LSUrDNA) of the 12 described Naegleria spp. and of 34 other Naegleria lineages that might be distinct species. Two strains yielded a product that is longer than 3 kb, which is the length of the LSUrDNA of all described Naegleria spp. Sequencing data revealed that the insert in one of these strains is a group I intron without an open reading frame (ORF), while the other strain contains two different group I introns, of which the second intron has an ORF of 175 amino acids. In the latter ORF there is a conserved His-Cys box, as in the homing endonucleases present in group I introns in the small subunit ribosomal DNA (SSUrDNA) of Naegleria spp. Although the group I introns in the LSUrDNA differ in sequence, they are more related to each other than they are to the group I introns in the SSUrDNA of Naegleria spp. The three group I introns in the LSUrDNA in Naegleria are at different locations and are probably acquired by horizontal transfer, contrary to the SSUrDNA group I introns in this genus which are of ancestral origin and are transmitted vertically.  相似文献   

20.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号