首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we present a novel method to isolate and enrich low concentrations of Campylobacter pathogens. This method, Acanthamoeba-Campylobacter coculture (ACC), is based on the intracellular survival and multiplication of Campylobacter species in the free-living protozoan Acanthamoeba polyphaga. Four of the Campylobacter species relevant to humans and livestock, Campylobacter jejuni, C. coli, C. lari, and C. hyointestinalis, were effectively enriched by the coculture method, with growth rates comparable to those observed in other Campylobacter enrichment media. Studying six strains of C. jejuni isolated from different sources, we found that all of the strains could be enriched from an inoculum of fewer than 10 bacteria. The sensitivity of the ACC method was not negatively affected by the use of Campylobacter-selective antibiotics in the culture medium, but these were effective in suppressing the growth of seven different bacterial species added at a concentration of 104 CFU/ml of each species as deliberate contamination. The ACC method has advantages over other enrichment methods as it is not dependent on a microaerobic milieu and does not require the use of blood or other oxygen-quenching agents. Our study found the ACC method to be a promising tool for the enrichment of Campylobacter species, particularly from water samples with low bacterial concentrations.  相似文献   

2.
Multiplex PCR assay (m-PCR) with three sets of primers was developed for simultaneous identification of Campylobacter jejuni and C. coli. Poultry faecal samples were enriched in Preston broth for 24 h and streaking on selective media was performed before and after enrichment. m-PCR was applied on bacterial cultures harvested from media plates. The data showed a selective effect of Preston broth which favoured the growth of C. coli. Identification of the species by the hippurate hydrolysis test and by the m-PCR was performed on 294 isolates of Campylobacter. The efficiency of the identification by the biochemical test is only 34% in comparison to 100% efficiency with the PCR. The use of our m-PCR in combination with the culture method allowed reliable detection and identification of C. jejuni and C. coli within 3-4 d.  相似文献   

3.
Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that these DNA-based technologies are suitable alternatives to time-consuming conventional detection methods. DNA hybridization, besides being sensitive, also has the potential to be used in direct enumeration of C. jejuni organisms in chicken samples.  相似文献   

4.
Traditionally fluorescence in situ hybridization (FISH) has been performed with labeled DNA oligonucleotide probes. Here we present for the first time a high affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting thermotolerant Campylobacter spp. using FISH. Thermotolerant Campylobacter spp, including the species Campylobacter coli, Campylobacter jejuni and Campylobacter lari, are important food and water borne pathogens. The designed PNA probe (CJE195) bound with higher affinity to a previously reported low affinity site on the 16S rRNA than the corresponding DNA probe. PNA also overcame the problem of the lack of affinity due to the location of the binding site and the variation of the target sequence within species. The PNA probe specificity was tested with several bacterial species, including other Campylobacter spp. and their close relatives. All tested C. coli, C. jejuni and C. lari strains were hybridized successfully. Aging of the Campylobacter cultures caused the formation of coccoid forms, which did not hybridize as well as bacteria in the active growth phase, indicating that the probe could be used to assess the physiological status of targeted cells. The PNA FISH methodology detected C. coli by membrane filtration method from C. coli spiked drinking water samples.  相似文献   

5.
The prevalence of campylobacters and arcobacters in broiler chickens   总被引:4,自引:2,他引:2  
Chicken carcasses from a supermarket and from a poultry abattoir were examined using methods designed to isolate as many strains of campylobacters and related organisms as possible. Strains of arcobacter, but no campylobacters, were isolated from every carcass after enrichment. Campylobacter jejuni subsp. jejuni was isolated from all carcasses examined by direct plating and other Campylobacter -like strains were isolated from nine out of 15 abattoir carcasses by direct plating but not after enrichment. Only the Camp. jejuni subsp. jejuni strains could be identified to species level using a readily available identification scheme and/or a commercial identification kit. Examination of caecal contents from the 15 abattoir poultry yielded Camp. jejuni subsp. jejuni and Campylobacter -like strains from 15 and eight by direct plating, and from six and nine after enrichment, respectively. Four sites in the intestine of the abattoir birds (60 samples) were examined for arcobacters and only one strain was isolated. This indicates that arcobacters are probably not normal inhabitants of the poultry intestine. Poultry is a rich source of other campylobacteria besides the thermophilic Campylobacter spp.  相似文献   

6.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37 degrees C for 24 h, followed by 42 degrees C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

7.
A simplified and rapid genetic identification method for Campylobacter species without radioisotope was established. Three different amounts of DNA (200, 50, and 12.5 ng) extracted from each type strain of Campylobacter species with standard Marmur's procedure were spotted on a nitrocellulose filter. DNA obtained from one ml bacterial suspension at a concentration of McFarland standard turbidity No. 1 of Campylobacter fetus, C. jejuni, C. coli, and C. pylori isolates were sufficiently labeled with photo-biotin within 15 min and clearly hybridized with the type strain of the corresponding species within four to six hours. Hybridized spots were visualized with alkaline-phosphatase-conjugated streptavidin color-detection method. The reaction was usually stopped within 30 min. Atypical clinical isolates such as a nitrate-negative C. jejuni, two nalidixic acid-resistant C. jejuni, and two strains of C. fetus able to grow at 42 C, which were tentatively identified as such, were definitely identified by the simplified DNA hybridization method presented here. This method will be applicable routinely for the definite identification of atypical strains of Campylobacter species and other gram-negative bacteria difficult to identify biochemically.  相似文献   

8.
AIMS: To develop a real-time (rt) PCR for species differentiation of thermophilic Campylobacter and to develop a method for assessing co-colonization of pigs by Campylobacter spp. METHODS AND RESULTS: The specificity of a developed 5' nuclease rt-PCR for species-specific identification of Campylobacter jejuni, Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and of a hipO gene nucleotide probe for detection of C. jejuni by colony-blot hybridization were determined by testing a total of 75 reference strains of Campylobacter spp. and related organisms. The rt-PCR method allowed species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis and the colony-blot hybridization approach provided an effective tool for isolation of C. jejuni from pig faecal samples typically dominated by C. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Species differentiation between thermophilic Campylobacter is difficult by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig faeces.  相似文献   

9.
The effectiveness of 4 enrichment media for the recovery of low levels of inoculated cells of Campylobacter jejuni was evaluated. The media contained antibiotics or antibiotics and bile acids as selective compounds. Three of the media recovered most of the inoculated low numbers of 6 C. jejuni strains. In the 3 media the growth rate of 3 strains, indicated by the increase in the log number of cells during 24 h or 48 h incubation at 42 ° C, was about the same as in the control medium without selective compounds. The same 3 media also recovered a low number of Campylobacter cells from artificially contaminated raw milk or ground meat samples. The enrichment medium B containing 40 I.U. Colistin, 5 μg novobiocin, 2 mg Na-cholic acid and 50 mg cycloheximide per ml was inhibitory for most Campylobacter strains studied.  相似文献   

10.
Abstract A 1189 base-pair long DNA fragment, VS1, was isolated from a Campylobacter jejuni CIP 70.2 cosmid library and was found to contain regions specific for this bacterial species. For detection and identification of C. jejuni , two oligonucleotides derived from the VS1 sequence were used as primers in polymerase chain reaction test on genomic DNAs from 38 Campylobacter and from 10 non- Campylobacter strains. A specific, 358 base-pair long DNA fragment was amplified only when C. jejuni DNA was used as a target. The detection limit of the amplification reaction was as low as 1.86 fg DNA, which is the equivalent of one C. jejuni genome.  相似文献   

11.
A technique combining enrichment in Preston enrichment broth and direct filtration onto chocolate agar was used to isolate Campylobacter species from pigeon feces. Campylobacter jejuni was isolated from 106 of 200 samples tested; 105 strains were isolated by enrichment-filtration, and 84 strains were isolated by direct plating. Most of the strains grew after 48 h at 37 degrees C.  相似文献   

12.
A technique combining enrichment in Preston enrichment broth and direct filtration onto chocolate agar was used to isolate Campylobacter species from pigeon feces. Campylobacter jejuni was isolated from 106 of 200 samples tested; 105 strains were isolated by enrichment-filtration, and 84 strains were isolated by direct plating. Most of the strains grew after 48 h at 37 degrees C.  相似文献   

13.
Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. "Species-identifying" biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within +/-5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) "strains" composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.  相似文献   

14.
A cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection of cdtA, cdtB or cdtC gene of Campylobacter jejuni, Campylobacter coli or Campylobacter fetus, respectively, was developed and evaluated with 76 Campylobacter strains belonging to seven different species and 131 other bacterial strains of eight different genera. The cdtA, cdtB or cdtC gene of C. jejuni, C. coli or C. fetus, respectively, could be successfully amplified using the corresponding set of primers in a highly species-specific manner. Furthermore, the specific primer set for the cdtA, cdtB or cdtC gene of a particular species could amplify the desired gene from a mixture of DNA templates of any of two or all three species. The detection limit of C. jejuni, C. coli or C. fetus was 10-100 CFU tube(-1) by the multiplex PCR assay on the basis of the presence of the cdtA, cdtB or cdtC gene. These data indicate that the cdt gene-based multiplex PCR assay may be useful for rapid and accurate detection as well as identification of Campylobacter strains in a species-specific manner.  相似文献   

15.
AIMS: To compare pressure resistance between strains of Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter fetus, and to investigate the effect of suspending medium on pressure resistance of sensitive and more resistant strains. METHODS AND RESULTS: Six strains of C. jejuni and four each of C. coli, C. lari and C. fetus were pressure treated for 10 min at 200 and 300 MPa. Individual strains varied widely in pressure resistance but there were no significant differences between the species C. jejuni, C. coli and C. lari. Campylobacter fetus was significantly more pressure sensitive than the other three species. The pressure resistance of C. jejuni cultures reached a maximum at 16-18 h on entry into stationary phase then declined to a minimum at 75 h before increasing once more. Milk was more baroprotective than water, broth or chicken slurry but did not prevent inactivation even of a resistant strain at 400 MPa. CONCLUSIONS: Pressure resistance varies considerably between species of Campylobacter and among strains within a species, and survival after a pressure challenge will be markedly influenced by culture age and food matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: Despite the strain variation in pressure resistance and protective effects of food, Campylobacter sp. do not present a particular problem for pressure processing.  相似文献   

16.
For epidemiological studies of Campylobacter infections, molecular typing methods that can differentiate campylobacters at the strain level are needed. In this study we used a recently developed genotyping method, amplified fragment length polymorphism (AFLP), which is based on selective amplification of restriction fragments of chromosomal DNA, for genetic typing of Campylobacter jejuni and Campylobacter coli strains derived from humans and poultry. We developed an automated AFLP fingerprinting method in which restriction endonucleases HindIII and HhaI were used in combination with one set of selective PCR primers. This method resulted in evenly distributed band patterns for amplified fragments ranging from 50 to 500 bp long. The discriminatory power of AFLP was assessed with a C. jejuni strain, an isogenic flagellin mutant, and distinct C. jejuni strains having known pulsed-field gel electrophoresis and fla PCR-restriction fragment length polymorphism genotypes. Unrelated C. jejuni strains produced heterogeneous patterns, whereas genetically related strains produced similar AFLP patterns. Twenty-five Campylobacter strains obtained from poultry farms in The Netherlands grouped in three C. jejuni clusters that were separate from a C. coli cluster. The band patterns of 10 C. jejuni strains isolated from humans were heterogeneous, and most of these strains grouped with poultry strains. Our results show that AFLP analysis can distinguish genetically unrelated strains from genetically related strains of Campylobacter species. However, desirable genetically related strains can be differentiated by using other genotyping methods. We concluded that automated AFLP analysis is an attractive tool which can be used as a primary method for subtyping large numbers of Campylobacter strains and is extremely useful for epidemiological investigations.  相似文献   

17.
The culture filtrates from 10 Campylobacter species were screened for the presence of cytotoxins on a variety of selected tissue culture cell lines. Some Campylobacter jejuni strains showed no effects on tissue culture cell lines compared with other C. jejuni strains, especially C. jejuni 81116, which consistently produced a cytotoxin that was lethal to tissue culture cells. It was observed that CHO cells were the most sensitive cell line in detecting campylobacter cytotoxins. Samples containing the culture filtrate of C. jejuni 81116 prepared at various growth stages were used to determine the subcellular location of the cytotoxin. This C. jejuni 81116 cytotoxin appears to be a heat-stable toxin that is secreted from the cell during stationary phase; cytotoxin activity can be abolished with proteolytic enzymes.  相似文献   

18.
A polymerase chain reaction (PCR) method designed to sensitively detect and identify Campylobacter jejuni and Campylobacter coli without the need for isolating and culturing strains is described. The intergenic sequence between the flagellin genes flaA and flaB was amplified and characterized with a triple primer or seminested primer approach. A total of 50 bacterial strains, 27 of C. jejuni and C. coli and 23 of other species, were tested, giving no false-positive or false-negative results. The detection limit as determined by ethidium bromide staining of amplification products on agarose gels was 10 bacteria or less in artificially contaminated water, milk, and soft cheese samples with the seminested primer PCR assay. As an application of the PCR system, a set of 93 samples of milk and other dairy products was screened for the presence of C. jejuni and C. coli. We identified six positive samples (6.5%), while none were found with a conventional culture method.  相似文献   

19.
AIMS: To identify campylobacters isolated from clinically healthy cattle at species level by a multiplex polymerase chain reaction (m-PCR). The heterogeneity among Campylobacter jejuni and Campylobacter coli isolates was also investigated by using a restriction fragment length polymorphism (RFLP) analysis of flagellin (flaA) gene. METHODS AND RESULTS: Samples of intestinal contents, gall bladders, liver and faeces were collected from a total number of 1154 healthy cattle. The samples were inoculated onto Preston enrichment broth and agar. Of 1154 samples, 301 (26.1%) were positive for Campylobacter spp. Using an m-PCR assay for species identification, 179 (59.5%) were positive with C. jejuni specific primers while 30 (10%) were positive with C. coli specific primers. None of the liver samples examined was positive for C. jejuni or C. coli by mPCR. All the isolates identified as C. jejuni and C. coli were successfully subtyped by flaA typing. Of the 209 isolates tested, 28 different flaA types were found. Twenty-three flaA types were identified among 179 C. jejuni isolates and the remaining five from C. coli isolates. CONCLUSIONS: Although the overall results suggest that the degree of heterogeneity among the flaA genes of thermophilic Campylobacter strains isolated from healthy cattle is relatively high, they should be treated cautiously as the number of band types for C. coli was low and band type 8 in C. jejuni was represented by a high percentage (%58). SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of the present study suggest that healthy cattle can play role in the contamination of environment and human food chain by Campylobacter spp.  相似文献   

20.
We have recently developed a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for identifying Campylobacter jejuni, C. coli and C. fetus. In the present study, the applicability of this assay was evaluated with 34 Campylobacter-like organisms isolated from poultry in Thailand for species identification and was compared with other assays including API Campy, 16S rRNA gene sequence, and hippuricase (hipO) gene detection. Of the 34 strains analyzed, 20, 10 and 1 were identified as C. jejuni, C. coli, and Arcobacter cryaerophilus, respectively, and 3 could not be identified by API Campy. However, 16S rRNA gene analysis, showed that all 34 strains are C. jejuni/coli. To discriminate between these 2 species, the hipO gene, which is specifically present in C. jejuni, was examined by PCR and was detected in 20 strains, which were identified as C. jejuni by API Campy but not in the remaining 14 strains. Collective results indicated that 20 strains were C. jejuni whereas the 14 strains were C. coli. When the cdt gene-based multiplex PCR was employed, however, 19, 20 and 19 strains were identified as C. jejuni while 13, 14 and 13 were identified as C. coli by the cdtA, cdtB and cdtC gene-based multiplex PCR, respectively. Pulsed-field gel electrophoresis revealed that C. jejuni and C. coli strains analyzed are genetically diverse. Taken together, these data suggest that the cdt gene-based multiplex PCR, particularly cdtB gene-based multiplex PCR, is a simple, rapid and reliable method for identifying the species of Campylobacter strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号