首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Unrolling of the second leaf of 8-day-old rice (Oryza sativa L.) seedlings was promoted by weak blue light (B), but not by red light (R). The effect of B was counteracted by irradiation with R just before or after the B. The counteracting effect of R was reversed by subsequent irradiation with far-red light but not by B, even if B was applied for 10 h. The B was effective when the region 0.5–2 cm from the tip of the leaf was irradiated. These results indicate that in rice photoreceptors for blue light located in the region 0.5–2 cm from the tip of the leaf play a key role in leaf unrolling and that a B-absorbing pigment and phytochrome participate in leaf unrolling in a closely related manner.Abbreviations B blue light - R red light - FR far-red light - W white light - D dark This work was presented at the Annual Meeting of the Japanese Society of Plant Physiologists on April 4, 1978, in Hiroshima  相似文献   

2.
Continuous recordings of the effect of red light on intact darkgrown wheat seedlings (Triticum aestivum L. cv. Hatri) weremade at different times after sowing. When the coleoptile tipregion was irradiated 50, 70 or 90 h after sowing with red lightfrom two opposite fibre bundles a decrease in extension ratewas detectable after a latent period of 10 to 15 min. Growthrate reached a fluence dependent minimum at about 60 min, afterwhich growth acceleration towards the dark control rate wasobserved. When continuous red irradiation was started 50 or70 h after sowing the dark control rate was reached 2.5 h afteronset of irradiation and growth rate was little above this levelduring the next 2 h. With older coleoptiles (90 h after sowing)the growth rate recovery was only up to 50% of the dark controlrate and a second phase in growth inhibition became detectableabout 2.5 h after onset of red exposure, characterized by acontinuous decrease in extension rate. Under R/FR pulse irradiationboth the red-light-induced transient growth inhibition and thesecond phase of growth inhibition exhibit far-red reversibilityup to the level of far-red induced growth rate changes. (Received September 19, 1986; Accepted December 8, 1986)  相似文献   

3.
When 3–4 mm long coleoptiles of etiolated rice seedlings (cv. Koshijiwase) were irradiated with continuous red light their growth was seriously inhibited. If a brief exposure of red light (4×103 ergs cm−2) was given to the short coleoptiles, the growth rate dropped immediately after the irradiation, but the growth did not stop till the coleoptile reached some calculated length. If another brief red irradaition of the same order was given 24 hr after the first, the growth rate and the final length dropped further. The effect of red light was reversed by successively given far-red light, and this response was repeatedly red and far-red reversible. The escape reaction was rather slow so that photoreversibility was not lost at all by 8th hr, and 50% of the initial reversibility was lost within ca. 16 hr at 25±0.5 C. Blue light also induced the inhibition of coleoptile elongation, the effect was reversed by subsequent far-red irradiation, and this could be obtained repeatedly. Thus, the photoinhibition of the young coleoptile can be concluded to be under the control of phytochrome, and the mode of action appeared quite different from the previously reported results with longer coleoptiles.  相似文献   

4.
Unrolling of 1 cm sections, taken between 3 and 4 cm from the apex, of 6-day-old, etiolated barley leaves, was promoted by blue (426 nm) and red (658 nm) light. Accompanying such unrolling was a reduction in the level of the free proline of the tissue. When leaf unrolling was prevented by irradiation with far-red (728 nm) light, or treatment with abscisic acid (ABA) following red light irradiation, the level of proline remained more or less unchanged, at the level of the untreated, dark controls. The proline analogue, azetidine carboxylic acid (AZC) powerfully inhibited the light induced leaf opening, emphasizing the significance of proline-containing, structural and functional proteins in barley leaf unrolling. The inhibition imposed by AZC is partially reversible by added proline.  相似文献   

5.
Continuous recordings of the effect of red light on the over-all and zonal growth responses were made on intact, dark-grown wheat ( Triticum aestivum L., cv. Hatri) seedlings selected 70 or 90 h after sowing. The over-all growth response of intact coleoptiles induced by bilateral continuous red light (660 nm, 17 W m−2) was complex and resulted from the overlapping of different zonal growth responses. During a 5 h investigation period, these responses can be divided into two phases. The first phase (short-term response) was a transient growth inhibition. After a lag period of ca 15 min, the rate of extension decelerated to a minimum value at ca 60 min, after which an acceleration was seen. This response was qualitatively the same in all coleoptile zones investigated (tip, subapical zone, base) and independent of coleoptile age. The second phase (delayed response) became measurable between 1.8 and 3 h after onset of red light irradiation and exhibited zonal-specific growth promotion or inhibition, dependent on the coleoptile age. A persistent growth promotion was observed only in the tip region of coleoptiles selected 70 h after sowing and became detectable about 3 h after the onset of red light.  相似文献   

6.
Growth response of coleoptile segments excised from 3-day-old seedlings of wheat (Triticum vulgare cv. Baart) to gibberellic acid, indoleacetic acid, and 2,4-dichlorophenoxyacetic acid, to red light, and to several microtubule disorganizers depends on the initial position of the excised segment in the intact coleoptile. Red light, 660 nm, stimulates the growth of the apical cells, but inhibits markedly the growth of the cells in the basal region of the coleoptile. The effects of red light are independent of sucrose, gibberellic acid, indoleacetic acid, and 2,4-dichlorophenoxyacetic acid, even though these substances themselves markedly affect the growth of the coleoptile segments. Concentractions of the microtubule disorganizers, vinblastine sulfate, cupric chloride, urea, and colchicine, which do not alter significantly the growth of the dark control apical segments, substantially repress the promotive effects of red light or auxin on the increase in length of the apical cells of the coleoptile. This suggests that stimulation by red light and by auxin involves microtubule production. Microtubule disorganizers repress the growth of elongating cells of the coleoptile, yet on the other hand, auxin and irradiation do not alter significantly the response of basal cells to the microtubule disorganizing agents. We hypothesized that light and growth regulators induce polymerization of nonaggregated microtubule subunits, resulting in faster growth.  相似文献   

7.
Excised apical segments of etiolated rice (Oryza sativa L.) coleoptiles produced ethylene. Increasing the number of cut sites per coleoptile increased the rate of ethylene formation. Ethylene produced by an etiolated-intact seedling in the dark was about a half of that by the excised coleoptile segment. Red light of low energy as well as of continuous irradiation inhibited the production of ethylene. The inhibition by a low energy dose of red light was partly relieved, if the red light was followed immediately by a small dose of far red light. The effect of red and far red light was repeatedly reversible, indicating that ethylene production was regulated by a phytochrome system. If the exposure to far red light was preceded by a period of darkness, this photoreversibility disappeared; 50% of the initial reversibility was lost within 5 hours. Applied ethylene (10 microliters per liter) significantly promoted the growth of intact coleoptiles of either totally etiolated or red light-treated seedlings, but had no effect on the excised apical segment of coleoptile.  相似文献   

8.
Summary Unrolling of etiolated wheat leaf segments is stimulated by short periods of exposure to red light. Both gibberellic acid and kinetin will stimulate unrolling in the dark, whereas abscisic acid (ABA) inhibits the unrolling response to these two hormones and to red light. Exposure to 5 minutes of red light leads to a rapid increase in endogenous gibberellin levels in etiolated wheat leaves, and this increase is followed by a rapid decline. Pre-treatment with ABA inhibits the increase in gibberellin levels in response to red light, but the ihibitory effect of ABA on unrolling cannot be ascribed only to its effect on gibberellin levels. Pre-treatment with red light reduces the lag-phase in chlorophyll development when wheat leaf segments are subsequently exposed to white light; the effect of red light may be replaced by pre-treatment with kinetin, but gibberellic acid is relatively ineffective in this respect.  相似文献   

9.
Moritoshi Iino 《Planta》1982,156(5):388-395
Brief irradiation of 3-d-old maize (Zea mays L.) seedlings with red light (R; 180 J m-2) inhibits elongation of the mesocotyl (70–80% inhibition in 8 h) and reduces its indole-3-acetic acid (IAA) content. The reduction in IAA content, apparent within a few hours, is the result of a reduction in the supply of IAA from the coleoptile unit (which includes the shoot apex and primary leaves). The fluence-response relationship for the inhibition of mesocotyl growth by R and far-red light closely resemble those for the reduction of the IAA supply from the coleoptile. The relationship between the concentration of IAA (1–10 M) supplied to the cut surface of the mesocotyl of seedlings with their coleoptile removed and the growth increment of the mesocotyl, measured after 4 h, is linear. The hypothesis that R inhibits mesocotyl growth mainly by reducing the IAA supply from the coleoptile is supported. However, mesocotyl growth in seedlings from which the coleoptiles have been removed is also inhibited by R (about 25% inhibition in 8 h). This inhibition is not related to changes in the IAA level, and not relieved by applied IAA. In intact seedlings, this effect may also participate in the inhibition of mesocotyl growth by R. Inhibition of cell division by R, whose mechanism is not known, will also result in reduced mesocotyl elongation especially in the long term (e.g. 24 h).Abbreviations FR far-red light - IAA indole-3-acetic acid - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light  相似文献   

10.
The far-red reversibility of the phytochrome-controlled stimulation of elongation of coleoptile sections by low fluence red light has been characterized in subapical coleoptile sections from dark-grown Avena sativa L., cv Lodi seedlings. The fluence dependence of the far-red reversal was the same whether or not the very low fluence response is also expressed. The capacity of far-red light to reverse the red light-induced response began to decline if the far-red light was given more than 90 minutes after the red irradiation. Escape was complete if the far red irradiation was given more than 240 minutes after the red irradiation. Sections consisting of both mesocotyl and coleoptile tissue from dark-grown Avena seedlings were found to have physiological regulation of the very low fluence response by indole 3-acetic acid and low external pH similar to that seen for sections consisting entirely of coleoptile tissue. The fluence-dependence of the red light-induced inhibition of mesocotyl elongation was studied in mesocotyl sections from dark grown Zea mays L. hybrid T-929 seedlings. Ten micromolar indole 3-acetic acid stimulates the control elongation of the sections, while at the same time increasing the sensitivity of the tissue for the light-induced inhibition of growth by a factor of 100.  相似文献   

11.
B. R. Loveys  P. F. Wareing 《Planta》1971,98(2):117-127
Summary The unrolling of etiolated wheat leaf sections in the dark is stimulated by the application of gibberellic acid (GA3). GA3 is most effective if applied for a short time at the beginning of incubation. Kinetin also stimulated leaf unrolling in the dark. AMO1618 and CCC inhibit red light and kinetin-stimulated unrolling. Gibberellin-like substances extracted from red light-treated leaf tissue are effective in stimulating leaf unrolling.Ethylene production in leaf sections is stimulated by IAA, GA3 and kinetin and inhibited by ABA. A brief exposure to red light decreases the ability of the tissue to produce ethylene. It is concluded that ethylene plays no important role in the control of leaf unrolling by red light or by the application of hormones.Holder of a Science Research Council Studentship.  相似文献   

12.
Kang BG 《Plant physiology》1971,47(3):352-356
In the primary leaf sections of etiolated wheat (Triticum aestivum L.) seedlings, red light-induced unrolling is accompanied by an increase in incorporation of 14C-leucine into protein. By differential centrifugation, the unrolling response was found to be closely related to incorporation of the amino acid into the supernatant fraction (105,000g). Cycloheximide and chloramphenicol inhibit both leaf unrolling and synthesis of the supernatant protein, although chloramphenicol exerts its effect more strongly on the fraction which presumably contains the plastids. In a barley (Hordeum vulgare L.) albino mutant completely devoid of ribulose diphosphate carboxylase activity, only incorporation of 14C-leucine into the supernatant fraction is substantially promoted by red light. This mutant exhibits the photoresponse of leaf unrolling.  相似文献   

13.
Summary Red light, mediated by the photoreceptor phytochrome, induces maize leaf unrolling as well as leaf expansion. Protoplasts prepared from maize leaves still in the rolled condition swell in a red-far red photoreversible manner indicating that phytochrome mediates this phenomenon. To determine if protoplast swelling is related to leaf unrolling, leaf expansion, or both, we compared red-light induced swelling of protoplasts from rolled maize leaves to protoplasts prepared from tissues that are known to grow in response to light but do not unroll. We also compared the swelling response of protoplasts from rolled vs. unrolled leaves. In all cases, we found that swelling correlated with the unrolling response and not leaf expansion.  相似文献   

14.
The growth of rice seedlings (Oryza satira L.) in the presence of ethylene caused a change in the response to light of coleoptile elongation. In plants grown in air without added ethylene coleoptile elongation was promoted by red, far-red and yellow-green light only in very young seedlings; in older plants irradiation inhibited the growth of the coleoptile. The effect of growing plants in the presence of ethylene was to prolong the period during which light promoted coleoptile growth. Elongation of the first internode was inhibited by light whether or not the seedlings were grown in the presence of ethylene. A correlation existed between the growth effect of an irradiation and the initial decay rate of phytochrome which was established by the treatment. Regardless of wave length, light sources whose intensities were adjusted to produce a decay rate of about 10% per hour or less induced a moderate rate of coleoptile elongation which persisted for a relatively long period. Irradiation with red or yellow-green light of higher intensity which produced a higher rate of phytochrome decay induced a higher rate of coleoptile elongation, but growth stopped after several hours. Other observations, however, showed that one cannot establish a general simple correlation between the rate of elongation of rice coleoptiles under light and the status of measurable phytochrome in the plant.  相似文献   

15.
    
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
  1. Under continuous irradiation, the growth of intact rice coleoptilewas strongly inhibited by red light, and somewhat preventedby blue and far-red light. The inhibitory effect of red lighton coleoptile elongation was caused by a low-energy brief irradiation,and a single exposure of 1.5 kiloergs cm–2 incidentenergy of red light brought about the 50% inhibition. This photoinhibitionof growth was observed only after the coleoptile had elongatedto about 10 mm or longer. The red light-induced effect was reversedby an immediately following brief exposure to far-red light,and the photoresponses to red and far-red light were repeatedlyreversible. The escape reaction of red lightinduced effect tookplace at a rate so that 50% of the initial reversibility waslost within 9 hr in darkness at 27. The inhibition by bluelight and reversal by far-red irradiation was also achievedrepeatedly with successive treatments of the coleoptiles. Theevidence for a low intensity red far-red reversible controlof coleoptile growth, indicative of control by phytochrome,seems clearly established in etiolated intact seedlings.
  2. Incontrast, the elongation of apically excised rice coleoptilesegments was promoted by a brief exposure to red light in 0.02M phosphate buffer, pH 7, and the effect was almost completelynullified by an immediately subsequent exposure to far-red light.It becomes evident that the growth of intact coleoptiles wasinhibited by a exposure to red light, while that of excisedsegments in a buffer was rather promoted by red irradiation.The direction of red light induced responses, either promotiveor inhibitory, depends upon the method of bioassay using intactcoleoptiles or their excised segments.
(Received July 24, 1967; )  相似文献   

17.
Effect of red light on coleoptile growth   总被引:2,自引:2,他引:0       下载免费PDF全文
Muir RM  Chang KC 《Plant physiology》1974,54(3):286-288
The effects of red light in reducing the growth of the oat (Avena sativa L.) coleoptile and the synthesis of auxin in the coleoptile tip are detectable 2 hours after treatment and become more pronounced with time. When the coleoptile tip is supplied with additional tryptophan the synthesis of auxin is doubled both in darkness and when exposed to red light. Treatment of the tip with gibberellic acid or pyridoxal phosphate overcomes the reduction of auxin synthesis caused by red light. The uptake of exogenous indoleacetic acid, at pH 6.5, by coleoptile tissue is doubled by exposure to red light. The effect of red light on coleoptile growth appears to be mediated by phytochrome in the cell membrane which delocalizes the tryptophan utilized for auxin synthesis.  相似文献   

18.
Unrolling due to blue light (B) irradiation of the second leavesdetached from 8-day-old rice (Oryza saliva L.) seedlings wassimilar to that reported previously for nondetached leaves.The effect of B was counteracted by irradiation with red light(R). The counteracting effect of R was reversed by subsequentirradiation with far-red light (FR). When the detached leaf was irradiated with B passed througha 1-mm-wide slit 5, 8, 10, 12 or 15 mm from the leaf tip, irradiation10 mm from the leaf tip was the most effective. The effect of a 1 mm-wide-B irradiation 10 mm from the leaftip was counteracted by a 1 mm-wide-R irradiation at the sameposition, but not by irradiations at the other points. The counteractingeffect of R was reversed by a 1 mm-wide-FR irradiation at thesame position. This suggests that the excitation or the reactionof the B photoreceptor(s) is affected directly by the PFR formof phytochrome. The dose-response curve for the unrolling caused by B showeda simple Bunsen-Roscoe relation without two peaks, which differsfrom that for the phototropism in Avena caused by B. (Received August 21, 1980; Accepted December 20, 1980)  相似文献   

19.
Abstract Secretion of coproporphyrin III by suspensions of Arthrobacter photogonimos and A. globiformis facilitated analysis of the paths of synthesis of δ-aminolevulinic acid, the precursor of tetrapyrroles. Sensitivity of coproporphyrin accumulation to gabaculine and incorporation of 14C from [1-14C]glutamate indicated that suspensions of A. photogonimos synthesized δ-aminolevulinic acid from glutamate by the widespread C5 pathway. In contrast, A. globiformis cells switched from predominantly the C5 pathway for δ-aminolevulinic acid synthesis in early exponential phase cultures to δ-aminblevulinic acid synthase in stationary phase cultures.  相似文献   

20.
Bleiss W  Smith H 《Plant physiology》1985,77(3):552-555
Continuous recordings were made using a linear displacement transducer to investigate short-term growth responses of intact dark-grown wheat (Triticum aestivum L. cv Maris Huntsman) seedlings to red light. To eliminate any effect of light prior to the experimental treatments, the seedlings were grown and mounted on the transducer apparatus in total darkness. The growth kinetics after irradiation were complex and appeared to consist of three successive phases of growth deceleration. When the tip of the intact coleoptile was irradiated with red light from two opposite fiber bundles (fluence rate: 2 × 64 micromoles per square meter per second) for varying periods of time (10 seconds, 1 minute, 5 minutes, continuous), a decrease in extension rate was detectable after a latent period of 8 to 10 minutes. Up to 30 minutes after the start of the irradiation treatment, there was no difference in the kinetics of inhibition (about 20 to 25% inhibition) between the different lengths of irradiation. Extension rate reached a minimum (65% inhibition) at about 85 minutes, after which growth acceleration toward the dark control rate was observed. Far-red reversibility of the rapid effect of red light on growth was not observed, even when far-red light was given only 4 seconds after the end of 10 seconds red light. Short (15 seconds) far-red light did not induce a response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号