首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.  相似文献   

2.
Treatment of methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-alpha-D-mannopyranosyl)-alpha -D- mannopyranoside with N,N-diethylaminosulfur trifluoride (Et2NSF3), followed by O-deacetylation and catalytic hydrogenolysis, afforded methyl 2-O-(6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8). Methyl 6-deoxy-6-fluoro-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (11) was similarly obtained from methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-alpha-D- mannopyranoside. 1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro-beta-D-mannopyranose (13), used for the synthesis of the 4-nitrophenyl analogs of 8 and 11, as well as their 3-O-linked isomers, was obtained by treatment of 1,2,3,4-tetra-O-acetyl-beta-D-mannopyranose with Et2NSF3. Treatment of 13 with 4-nitrophenol in the presence of tin(IV) chloride, followed by sequential O-deacetylation, isopropylidenation, acetylation, and cleavage of the acetal group, afforded 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranoside (18). Treatment of 13 with HBr in glacial acetic acid furnished the 6-deoxy-6-fluoro bromide 19. Glycosylation of diol 18 with 20 gave 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-3-O- (21) and -2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (23) in the ratio of approximately 2:1, together with a small proportion of a branched trisaccharide. 4-Nitrophenyl 4,6-di-O-acetyl-alpha-D-mannopyranoside was similarly glycosylated with bromide 19 to give 4-nitrophenyl 4,6-di-O-acetyl-3-O- and -2-O-(2,3,4-tri- O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranosid e. The various di- and tri-saccharides were O-deacetylated by Zemplén transesterification.  相似文献   

3.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

4.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

5.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

6.
Sequential reaction of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (7) with butyllithium and 2-[2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D- arabinonoyl]thio-3-nitropyridine (6) at -78 degrees gave 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl 2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D-arabinonate+ ++ (8; 71%, alpha:beta greater than 50:1). Ester carbonyl methylenylation, desilylation, and iodoetherification in the presence of silica gave 3,4,6-tri-O-benzyl-1-deoxy-1-iodo-(2,3,4,6-tetra-O-benzyl-alpha-D- glucopyranosyl)-beta-D-fructofuranoside (15; 44%, alpha:beta greater than 50:1). This neopentylic iodide 15 was converted into sucrose (1;80%) by free-radical substitution using TEMPO (24) followed by sodium-ammonia reduction, acetylation, and Zemplén methanolysis.  相似文献   

7.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

8.
The synthesis of the oligosaccharides beta-D-Xylp-(1----2)-beta-D-Manp-OMe (12), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-OMe (17), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)]-beta-D-Manp+ ++-OMe (21), and beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)] [alpha-D-Manp-(1----6)]-beta-D-Manp-OMe (25) is described. Methyl 3-O-benzyl-4,6-O-isopropylidene-beta-D-mannopyranoside (6) was prepared from the corresponding glucoepimer (4) by oxidation, followed by stereoselective reduction. Condensation of 6 with 2,3,4-tri-O-acetyl-alpha-D-xylopyranosyl bromide in the presence of mercuric cyanide gave a 1:9 mixture of methyl 3-O-benzyl-4,6-O-isopropylidene-2-O-(2,3,4- tri-O-acetyl-alpha- (7a) and -beta-D-xylopyranosyl)-beta-D-mannopyranoside (7), and then 7 was converted into the acetylated disaccharide-glycoside 11. Regioselective mannosylation, with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide, at position 6 of deisopropylidenated 7 (8), using mercuric bromide as a promoter, afforded the trisaccharide-glycoside derivative 13, which was transformed into the acetylated trisaccharide-glycoside 16. The disaccharide derivative 10, obtained from 8, and the trisaccharide derivative 15, obtained from 13, were glycosylated at position 3 with O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)trichloroacetimidate (19), using trimethylsilyl triflate as a promoter, giving rise to acetylated tri- (20) and tetra-saccharide (24) derivatives, respectively. O-Deacetylation of 11, 16, 20, and 24 gave 12, 17, 21, and 25, respectively.  相似文献   

9.
Methyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (5) was obtained crystalline by way of its 3-O-allyl derivative, which was in turn obtained by ring-opening of a presumed 3,4-O-stannylene derivative of methyl beta-D-galactopyranoside, followed by benzylation. Condensation of 5 with 2-methyl-(2-acetamido-3,4,6-tri-O-acetyl-1,2-dideoxy-beta-D-glucopyra no)-[2,1-d]-2-oxazoline in 1,2-dichloroethane in the presence of p-toluenesulfonic acid afforded the disaccharide derivative methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2, 4,6-tri-O-benzyl-beta-D-galactopyranoside (6) Deacetylation of 6 in methanolic sodium methoxide afforded the disaccharide derivative 7, which was acetalated with alpha, alpha-dimethoxytoluene to afford the 4',6'-O-benzylidene acetal (10). Catalytic hydrogenolysis of the benzyl groups of 7 afforded the title disaccharide 8. Glycosylation of 10 with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of mercuric cyanide gave the fully protected trisaccharide derivative 12. Systematic removal of the protecting groups of 12 then furnished the title trisaccharide 14. The structures of 5, 8, and 14 were all confirmed by 13C-n.m.r. spectroscopy. The 13C-n.m.r. chemical shifts for methyl alpha- and beta-D-galactopyranoside, and also those of their 3-O-allyl derivatives, are recorded, for the sake of comparison, in conjunction with those of compound 5.  相似文献   

10.
A series of octyl glycosides di- to tetrasaccharides related to the GPI anchor of Trypanosoma brucei was prepared. Treatment of octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3 -diyl)-alpha-D-mannopyranoside with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside under activation with bromine and silver trifluoromethanesulfonate afforded the alpha-linked disaccharide octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-4,6-O- (1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-alpha -D-mannospyranoside, the siloxane ring of which was regioselectively opened with a HF-pyridine complex to give the disaccharide acceptor octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-2-O-benzoyl-4-O-(3 -fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)-alpha-D- mannopyranoside (4). Mannosylation of 4 with benzobromomannose (7), followed by fluoride catalyzed desilylation gave the trisaccharide octyl 2-O-benzoyl-6-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3-O-(2, 3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-alpha-D-mannospyranosi de, which was deblocked via the deacylated intermediate octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-(alpha-D-manno pyranosyl)-alpha-D-mannospyranoside to afford the octyl glycoside trisaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-(alpha-D-mannopyranosyl)-alpha-D-m annospyranoside. Glycosylation of 4 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)- alpha-D-mannopyranosyl trichloroacetimidate resulted in the tetrasaccharide octyl 2-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane -3-yl)-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2-O -(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-alp ha-D-mannopyranosyl]-alpha-D-mannospyranoside, sequential desilylation, deacylation and debenzylation, respectively, of which via the intermediate octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2 -O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-a lpha-D-mannopyranosyl]-alpha-D-mannospyranoside afforded the octyl glycoside tetrasaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-[2-O-(alpha-D-mannopyranosyl)-alpha-D -mannopyranosyl]-alpha-D-mannospyranoside.  相似文献   

11.
Methyl 3,4,6-tri-O-benzyl-beta-D-mannopyranoside (2), methyl 2,3-O-isopropylidene-beta-D-mannopyranoside (11), and 4-nitrophenyl 2,3-O-isopropylidene-beta-D-mannopyranoside (12) were each condensed with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide (1) in the presence of mercuric cyanide, to give after deprotection, methyl 2-(5) and 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (15), and 4-nitrophenyl 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (20), respectively. A similar condensation of 11 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha-D- mannopyranosyl bromide (21) and 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha D-mannopyranosyl bromide (25), followed by removal of protecting groups, afforded methyl O-alpha-D-mannopyranosyl-(1----2)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (24) and methyl O-alpha-D-mannopyranosyl-(1----6)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (28), respectively. Bromide 25 was also condensed with 12 to give a trisaccharide derivative which was deprotected to furnish 4-nitrophenyl O-alpha-D-mannopyranosyl-(1----6)-alpha-D-mannopyranosyl-(1----6)-beta-D - mannopyranoside (31). Phosphorylation of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside and 15 with diphenyl phosphorochloridate in pyridine gave the 6'-phosphates 6 and 16, respectively. Hydrogenolysis of the benzyl and phenyl groups provided methyl 2-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (7) and methyl 6-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (17) after treatment with Amberlite IR-120 (Na+) cation-exchange resin. The structures of compounds 5, 7, 15, 17, 20, 24, 28, and 31 were established by 13C-n.m.r. spectroscopy.  相似文献   

12.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

13.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

14.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Catalytic hydrogenation of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (1alpha) in acetic acid-2-methoxyethanol gave 1-O-(L-beta-aspartyl)alpha-D-glucopyranose (2alpha) contaminated with 2-O-(L-alpha-aspartyl)-D-glucopyranose (8). Evidence that 8 was formed from the 1-oyl isomer of 1alpha, namely 2,3,4,6-tetra-O-benzyl-1-O-[4-benzyl N-(benzyloxycarbonyl)-L-aspart-1-oyl]-alpha-D-glucopyranose (7alpha), via 1 leads to 2 acyl migration, was obtained by submitting the deprotected D-glucosyl ester to successive N-acetylation, esterification, and O-acetylation; the final product was identified as a approximately 4:1 mixture of 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(acetyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (4alpha) and 1,3,4,6-tetra-O-acetyl-2-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-D-glucopyranose (6) which were also prepared by definitive methods. On the other hand, deprotection of 1beta gave isomerically pure 2beta which was converted into the peracetylated ester derivative 4beta; an explanation for the differences in aglycon isomeric purity of 2alpha and 2beta is given. Hydrogenolysis of 7beta under the above conditions led to intermolecular transesterification with scission of the C-1 ester bond to give 1-(2-methoxyethyl) L-aspartic acid and D-glucose. Catalytic hydrogenation of 7alpha and 7beta, performed in the presence of trifluoroacetic acid, afforded 1-O-(L-alpha-aspartyl)-alpha- and -beta-D-glucopyranoside trifluoroacetate salts (11alpha and 11beta), respectively. The structure of 11beta was established by successive conversion into 2,3,4,6-tetra-O-acetyl-1-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-beta-D-glucopyranose (5beta) which was also prepared by definitive methods. Analogous treatment of 11alpha gave the N-acetyl derivative 12 which underwent 1 leads to 2 acyl migration during esterification with diazomethane to give the N-acetyl methyl ester derivative 10; acetylation of 10 afforded 6.  相似文献   

16.
Synthesis of a tritylated tetrasaccharide 1,2-O-(1-cyano) ethylidene derivative is described by glycosylation of 3,6-di-O-benzoyl-4-O-(2,4,6-tri-O-benzoyl-beta- D-galactopyranosyl)-1,2-O-[1-(exo-cyano)ethylidene]-alpha-D- glucopyranose with 6-O-acetyl-3-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl-beta- D-galactopyranosyl)-2-deozy-2-phthalimido-D-glucopyranosyl. bromide followed by selective deacetylation and tritylation.  相似文献   

17.
The glycosyl donor, hepta-O-benzyl-beta-lactosyl trichloroacetimidate (4) was prepared by treating hepta-O-benzyl-lactose with trichloroacetonitrile in the presence of potassium carbonate. The acceptor, methyl 2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (8) was synthesized by hydrolysis of a 3,4-butane diacetal of methyl L-glycero-alpha-D-manno-oct-enopyranoside and subsequent benzylidenation. Glycosidation of the donor 4 with the acceptor 8 in 1,4-dioxane using Me(3)SiOTf as a promoter for 1 h at room temperature gave methyl (2,3,4,6-tetra-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl)-(1-->3)-2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (9) as a major product (59%). The oct-enopyranoside moiety of the trisaccharide 9 was converted to a heptopyranoside (80%) by oxidative cleavage with OsO(4)-NaIO(4) and subsequent reduction. Hydrogenolysis of the resulting trisaccharide and subsequent acetylation gave the peracetate of alpha-lactosyl-(1-->3)-Hep. Deacetylation of the peracetate afforded the title trisaccharide.  相似文献   

18.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

19.
The glycosyl chlorides of the 3-O-methyl (6) and 4-deoxy-4-fluoro (8) O-benzylated derivatives of D-galactopyranose and 2,3,4,6-tetra-O-benzyl-D-glucopyranose were condensed with methyl 2,3,6-tri-O-benzoyl-beta-D-galactopyranoside to give, after deprotection, the 3'-O-methyl (23), 4'-deoxy-4'-fluoro (25), and 4'-epi (27) derivatives, respectively, of methyl beta-D-galabioside (1). The glycosyl fluorides of 2,3,4-tri-O-benzyl-D-fucopyranose and the 3-deoxy (12) and 4-deoxy (16) O-benzylated derivatives of D-galactopyranose were condensed with methyl 2,3,6-tri-O-benzyl-beta-D-galactopyranoside (21), to give, after deprotection, the 6'-deoxy (31), 3'-deoxy (34), and 4'-deoxy (37) derivatives of 1, respectively. The 2'-deoxy (41) derivative of 1 was prepared by N-iodosuccinimide-induced condensation of 3,4,6-tri-O-acetyl-D-galactal and 21 followed by deprotection. Treatment of methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-alpha-D-galactopyranosyl)-beta -D- galactopyranoside with Et2NSF3 (DAST), followed by deprotection, provided the 6'-deoxy-6'-fluoro (46) derivative of 1. Molecular mechanics calculations yielded conformations for 23, 25, 27, 31, 34, 37, 41, and 46 with small deviations from the calculated conformation for 1 (phi H/psi H: -40 degrees/-6 degrees).  相似文献   

20.
Treatment of 2-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)ethanal with malononitrile, cyanoacetamide and 2-cyano-N-(4-methoxyphenyl)acetamide, respectively, in the presence of aluminium oxide yielded 2-cyano-4-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)crotonic acid derivatives. Cyclization with sulfur and triethylamine was performed to synthesize the 2-amino-5-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thiophene-3-carbonic acid derivatives, which were treated with triethyl orthoformate/ammonia and triethyl orthoformate, respectively, to furnish 6-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thieno[2.3-d]pyrimidine derivatives. Deprotection in two steps afforded 2-amino-5-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thiophene-3-carbonitrile and 6-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thieno[2.3-d]pyrimidine derivatives, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号