首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using styrene as the sole source of carbon and energy in concentrations of 10 to 500 microM, 14 strains of aerobic bacteria and two strains of fungi were isolated from various soil and water samples. In cell extracts of 11 of the bacterial isolates, a novel flavin adenine dinucleotide-requiring styrene monooxygenase activity that oxidized styrene to styrene oxide (phenyl oxirane) was detected. In one bacterial strain (S5), styrene metabolism was studied in more detail. In addition to styrene monooxygenase, cell extracts from strain S5 contained styrene oxide isomerase and phenylacetaldehyde dehydrogenase activities. A pathway for styrene degradation via styrene oxide and phenylacetaldehyde to phenylacetic acid is proposed.  相似文献   

2.
Kantz A  Gassner GT 《Biochemistry》2011,50(4):523-532
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of an NADH-specific flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA). NSMOA binds tightly to reduced FAD and catalyzes the stereospecific addition of one atom of molecular oxygen to the vinyl side chain of styrene in the enantioselective synthesis of S-styrene oxide. In this mechanism, molecular oxygen first reacts with NSMOA(FAD(red)) to yield an FAD C(4a)-peroxide intermediate. This species is nonfluorescent and has an absorbance maximum of 382 nm. Styrene then reacts with the peroxide intermediate with a second-order rate constant of (2.6 ± 0.1) × 10(6) M(-1) s(-1) to yield a fluorescent intermediate with an absorbance maximum of 368 nm. We compute an activation free energy of 8.7 kcal/mol for the oxygenation step, in good agreement with that expected for a peroxide-catalyzed epoxidation, and acid-quenched samples recovered at defined time points in the single-turnover reaction indicate that styrene oxide synthesis is coincident with the formation phase of the fluorescent intermediate. These findings support FAD C(4a)-peroxide being the oxygen atom donor and the identity of the fluorescent intermediate as an FAD C(4a)-hydroxide product of the styrene epoxidation. Overall, four pH-dependent rate constants corresponding to peroxyflavin formation (pK(a) = 7.2), styrene epoxidation (pK(a) = 7.7), styrene oxide dissociation (pK(a) = 8.3), and hydroxyflavin dehydration (pK(a) = 7.6) are needed to fit the single-turnover kinetics.  相似文献   

3.
Meneely KM  Lamb AL 《Biochemistry》2007,46(42):11930-11937
Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism.  相似文献   

4.
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.  相似文献   

5.
An arylketone monooxygenase was purified from Pseudomonas putida JD1 by ion exchange and affinity chromatography. It had the characteristics of a Baeyer-Villiger-type monooxygenase and converted its substrate, 4-hydroxyacetophenone, into 4-hydroxyphenyl acetate with the consumption of one molecule of oxygen and oxidation of one molecule of NADPH per molecule of substrate. The enzyme was a monomer with an M(r) of about 70,000 and contained one molecule of flavin adenine dinucleotide (FAD). The enzyme was specific for NADPH as the electron donor, and spectral studies showed rapid reduction of the FAD by NADPH but not by NADH. Other arylketones were substrates, including acetophenone and 4-hydroxypropiophenone, which were converted into phenyl acetate and 4-hydroxyphenyl propionate, respectively. The enzyme displayed Michaelis-Menten kinetics with apparent K(m) values of 47 microM for 4-hydroxyacetophenone, 384 microM for acetophenone, and 23 microM for 4-hydroxypropiophenone. The apparent K(m) value for NADPH with 4-hydroxyacetophenone as substrate was 17.5 microM. The N-terminal sequence did not show any similarity to other proteins, but an internal sequence was very similar to part of the proposed NADPH binding site in the Baeyer-Villiger monooxygenase cyclohexanone monooxygenase from an Acinetobacter sp.  相似文献   

6.
Oxygenases form an interesting class of biocatalysts, as they typically perform oxygenations with exquisite chemo-, regio-, and/or enantioselectivity. It has been observed that, once heterologously expressed in Escherichia coli, some oxygenases are able to form the blue pigment indigo. We have exploited this characteristic to screen a metagenomic library derived from loam soil and identified a novel oxygenase. This oxygenase shows 50% sequence identity with styrene monooxygenases from pseudomonads (StyA). Only a limited number of homologs can be found in the genome sequence database, indicating that this biocatalyst is a member of a relatively small family of bacterial monooxygenases. The newly identified monooxygenase catalyzes the epoxidation of styrene and styrene derivatives and forms the corresponding (S)-epoxides with excellent enantiomeric excess [e.g., (S)-styrene oxide is formed with >99% enantiomeric excess, ee] and therefore is named styrene monooxgenase subunit A (SmoA). SmoA shows high enantioselectivity towards aromatic sulfides [e.g., (R)-ethyl phenyl sulfoxide is formed with 92% ee]. This excellent enantioselectivity in combination with the moderate sequence identity forms a clear indication that SmoA from a metagenomic origin represents a new enzyme within the small family of styrene monooxygenases.  相似文献   

7.
Styrene monooxygenase (SMO) from Pseudomonas putida S12 is a two-component flavoenzyme composed of the NADH-specific flavin reductase, SMOB, and FAD-specific styrene epoxidase, SMOA. Here, we report the cloning, and expression of native and histidine-tagged versions of SMOA and SMOB and studies of the flavin transfer and styrene oxygenation reactions. In the reductive half-reaction, SMOB catalyzes the two-electron reduction of FAD with a turnover number of 3200 s(-1). Single turnover studies of the reaction of reduced SMOA with substrates indicate the formation of a stable oxygen intermediate with the absorbance characteristics of a flavin hydroperoxide. Based on the results of numerical simulations of the steady-state mechanism of SMO, we find that the observed coupling of NADH and styrene oxidation can be best explained by a model, which includes both the direct transfer and passive diffusion of reduced FAD from SMOB to SMOA.  相似文献   

8.
The in vivo regulation of glutamate dehydrogenase (GDH) was studied in Mucor racemosus as a function of nutritional conditions and morphological state. Both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP)-dependent GDH activities were found. The effect of carbon and nitrogen source on the specific activity of the NAD-dependent GDH suggests that its role is primarily catabolic. The NAD-dependent activity was generally an order of magnitude greater in mycelial cells than in yeast-phase cells grown on the same medium. During yeast-to-hyphal morphogenesis the increase in NAD-dependent activity preceded the appearance of hyphal cells both under aerobic and anaerobic conditions. Exogenous dibutyryl-cyclic AMP prevented the increase in NAD-dependent GDH concomitantly with the suppression of morphological differentiation. The NADP-dependent activity did not change appreciably during morphogenesis.  相似文献   

9.
A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m−3 h−1 (max. 30 g m−3 h−1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 °C, but the styrene removal was still satisfactory at 12 °C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the γ group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. Received: 30 May 1997 / Received revision: 22 August 1997 / Accepted: 25 August 1997  相似文献   

10.
11.
4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH(2))-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH(2) in vitro, HpaB was able to use FADH(2) and O(2) for the oxidation of 4-hydroxyphenylacetate. HpaB also used chemically produced FADH(2) for 4-hydroxyphenylacetate oxidation, further demonstrating that HpaB is an FADH(2)-utilizing monooxygenase. FADH(2) generated by Fre was rapidly oxidized by O(2) to form H(2)O(2) in the absence of HpaB. When HpaB was included in the reaction mixture without 4-hydroxyphenylacetate, HpaB bound FADH(2) and transitorily protected it from rapid autoxidation by O(2). When 4-hydroxyphenylacetate was also present, HpaB effectively competed with O(2) for FADH(2) utilization, leading to 4-hydroxyphenylacetate oxidation. With sufficient amounts of HpaB in the reaction mixture, FADH(2) produced by Fre was mainly used by HpaB for the oxidation of 4-hydroxyphenylacetate. At low HpaB concentrations, most FADH(2) was autoxidized by O(2), causing uncoupling. However, the coupling of the two enzymes' activities was increased by lowering FAD concentrations in the reaction mixture. A database search revealed that HpaB had sequence similarities to several proteins and gene products involved in biosynthesis and biodegradation in both bacteria and archaea. This is the first report of an FADH(2)-utilizing monooxygenase that uses FADH(2) as a substrate rather than as a cofactor.  相似文献   

12.
Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12–0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.  相似文献   

13.
YUC flavin monooxygenases catalyze the ratelimiting step of auxin biosynthesis. Here we report the vacuolar targeting and degradation of GFP-YUC1. GFP-YUC1 fusion expressed in Arabidopsis protoplasts or transgenic plants was primarily localized in vacuoles. Surprisingly, we established that GFP-YUC1, a soluble protein, was sorted to vacuoles through the ESCRT pathway, which has long been recognized for sorting and targeting integral membrane proteins. We further show that GFP-YUC1 was ubiquitinated and in this form GFP-YUC1 was targeted for degradation, a process that was also stimulated by elevated auxin levels. Our findings revealed a molecular mechanism of GFP-YUC1 degradation and demonstrate that the ESCRT pathway can recognize both soluble and integral membrane proteins as cargoes.  相似文献   

14.
The kinetics of alpha-NADH-dichlorophenolindophenol (DCPIP) and alpha-NADH-cytochrome c reductase reactions of rat liver microsomes showed that the reactio ns proceeded by a ping-pong mechanism, and that the oxidation of alpha-NADH was the rate-determining reaction. The DCPIP-reducing activity with alpha-NADH in the presence of ADP was about 1% of that with beta-NADH. ADP inhibited the alpha-NADH-DCPIP reductase reaction in a competitive manner with respect to alpha-NADH and a value of 1.2 mM for the inhibition constant was obtained. ADP also inhibited cytochrome b5 reduction with alpha-NADH. More than 90% of cytochrome b5 was reduced under conditions where 90% of the alpha-NADH-DCPIP reductase activity was suppressed with ADP. The reduction of DCPIP with alpha-NADH preceded that of cytochrome b5, but the reductions partly overlapped. From these results, a diversed electron flow from alpha-NADH to cytochrome b5 and electron sharing between cytochrome b5 and DCPIP were indicated. alpha-NAD+ also inhibited the alpha-NADH-DCPIP reductase reaction. Analyses of the inhibition indicated that two types of alpha-NADH-DCPIP reductase reaction existed, one of which was resistant to alpha-NAD+ inhibition. In contrast to the reoxidation of beta-NADH-reduced cytochrome b5, the process was largely monophasic when cytochrome b5 was reduced with alpha-NADH.  相似文献   

15.
A generic approach for flavoenzyme immobilization was developed in which the flavin cofactor is used for anchoring enzymes onto the carrier. It exploits the tight binding of flavin cofactors to their target apo proteins. The method was tested for phenylacetone monooxygenase (PAMO) which is a well-studied and industrially interesting biocatalyst. Also a fusion protein was tested: PAMO fused to phosphite dehydrogenase (PTDH-PAMO). The employed flavin cofactor derivative, N6-(6-carboxyhexyl)-FAD succinimidylester (FAD*), was covalently anchored to agarose beads and served for apo enzyme immobilization by their reconstitution into holo enzymes. The thus immobilized enzymes retained their activity and remained active after several rounds of catalysis. For both tested enzymes, the generated agarose beads contained 3 U per g of dry resin. Notably, FAD-immobilized PAMO was found to be more thermostable (40% activity after 1 h at 60 °C) when compared to PAMO in solution (no activity detected after 1 h at 60 °C). The FAD-decorated agarose material could be easily recycled allowing multiple rounds of immobilization. This method allows an efficient and selective immobilization of flavoproteins via the FAD flavin cofactor onto a recyclable carrier.  相似文献   

16.
Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%).  相似文献   

17.
The aim of this study was to clone and characterize the SUGAR-DEPENDENT6 (SDP6) gene, which is essential for postgerminative growth in Arabidopsis (Arabidopsis thaliana). Mutant alleles of sdp6 were able to break down triacylglycerol following seed germination but failed to accumulate soluble sugars, suggesting that they had a defect in gluconeogenesis. Map-based cloning of SDP6 revealed that it encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent glycerol-3-P (G3P) dehydrogenase:ubiquinone oxidoreductase called FAD-GPDH. This gene has previously been proposed to play a role both in the break down of glycerol (derived from triacylglycerol) and in NAD(+)/NADH homeostasis. Germinated seeds of sdp6 were severely impaired in the metabolism of [U-(14)C]glycerol to CO(2) and accumulated high levels of G3P. These data suggest that SDP6 is essential for glycerol catabolism. The activity of the glycolytic enzyme phosphoglucose isomerase is competitively inhibited by G3P in vitro. We show that phosphoglucose isomerase is likely to be inhibited in vivo because there is a 6-fold reduction in the transfer of (14)C-label into the opposing hexosyl moiety of sucrose when [U-(14)C]glucose or [U-(14)C]fructose is fed to sdp6 seedlings. A block in gluconeogenesis, at the level of hexose phosphate isomerization, would account for the arrested seedling growth phenotype of sdp6 and explain its rescue by sucrose and glucose but not by fructose. Measurements of NAD(+) and NADH levels in sdp6 seedlings also suggest that NAD(+)/NADH homeostasis is altered, and this observation is consistent with the hypothesis that SDP6 participates in a mitochondrial G3P shuttle by cooperating with the cytosolic NAD-dependent GPDH protein GPDHC1.  相似文献   

18.
19.
A nicotinamide adenine dinucleotide-specific L-(+)-lactate dehydrogenase (LDH) (EC 1.11.27) from Actinomyces viscosus T-6-1600 was purified approximately 110-fold by a combination of diethylaminoethyl-cellulose and 0.5 M Agarose A column chromatography. The ldh was stable at 26 C, but was quite labile at temperatures below 5 C. The enzyme had a molecular weight of 100,000 +/- 10,000 as determined by 0.5 M Agarose molecular exclusion chromatography and showed optimum activity between pH 5.5 and 6.2. The A. viscosus LDH exhibited homotropic interactions with its substrate, pyruvate, and its coenzyme, reduced nicotinamide adenine dinucleotide, indicating multiple binding sites on the enzyme for these ligands with some degree of cooperative interaction between them. The enzyme was under negative control by adenosine 5'-triphosphate, and its kinetic response to the negative effector was sigmoidal in nature. Inorganic phosphate reversed the inhibition exerted on the A. viscosus LDH by adenosine. The 5'-triphosphate thermal stability at 65 C of the LDH from A. viscosus was increased in the presence of its negative effector, adenosine 5'-triphosphate, but was markedly decreased in the presence of its coenzyme, reduced nicotinamide adenine dinucleotide. The glycolytic intermediate, fructose-1,6-diphosphate, had no effect on the catalytic activity of the A. viscosus LDH at saturating pyruvate concentrations. However, fructose-1,6-diphosphate was a potent positive effector at low substrate concentrations. Thus the A. viscosus LDH is under positive control by fructose-1,6-diphosphate and inorganic phosphate, but under negative control by adenosine 5'-triphosphate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号