首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) with the arginine reagents phenylglyoxal (PGO) and p-hydroxyphenylglyoxal (HPGO) leads to inactivation of the enzyme. Inactivation with HPGO leads to modification of approximately 3 mol of arginine per mole of enzyme. The modification reaction follows pseudo-first-order kinetics with a t1/2 of 1 min at 5 mM p-hydroxyphenylglyoxal in 0.1 M triethanolamine HCl, pH 7.8. By titration of HPGO-modified enzyme with 5,5'-bis(dithio-2-nitrobenzoic acid), the possibility of cysteine modification by the arginine reagent was ruled out. While shikimate 3-phosphate (S3P) afforded partial protection to the enzyme against inactivation by HPGO, complete protection could be obtained by using a mixture of S3P and glyphosate. Under the latter conditions, only 1 mol arginine was modified per mole of enzyme. This pattern of reactivity suggests that two arginines may be involved in the binding of S3P and glyphosate to EPSP synthase. A third reactive arginine appears to be nonessential for EPSPS activity. Labeling of EPSP synthase with [14C]phenylglyoxal, peptic digestion, HPLC mapping, and amino acid sequencing indicate that Arg-28 and Arg-131 are two of the reactive arginines labeled with [14C]PGO.  相似文献   

2.
Analysis of a Petunia hybrida cell culture (MP4-G) resistant to 1 mM glyphosate revealed a 15- to 20-fold increased level of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the herbicide-tolerant strain. Immunoblotting and enzyme kinetic measurements established that the increased EPSP synthase activity resulted from overproduction of a herbicide-sensitive form of the enzyme. Homogeneous enzyme preparations were obtained from the herbicide-tolerant cell line by sequential ion-exchange, hydroxyapatite, hydrophobic-interaction, and molecular sieve chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and molecular sieve chromatography established the Petunia enzyme to be a monomeric protein with Mr 49,000-55,800. Km values for phosphoenolpyruvate and shikimate 3-phosphate were about 14 and 18 microM, respectively. Glyphosate inhibited the enzyme competitively with phosphoenolpyruvate (Ki = 0.17 microM). These experiments provide further evidence that EPSP synthase is a major site of glyphosate action in plant cells.  相似文献   

3.
4.
Cloning and expression of flavonol synthase from Petunia hybrida   总被引:10,自引:0,他引:10  
Flavonols are important co-pigments in flower colour and are also essential for pollen tube growth. In petunia, flavonol synthesis is controlled by the Fl locus. Flavonol synthase (FLS) belongs to the 2-oxoglutarate-dependent dioxygenase family. Dioxygenase gene fragments were amplified by PCR on cDNA made from FlFl and flfl flowers using degenerate primers designed from conserved dioxygenase sequences. A petunia petal cDNA library was screened for clones that hybridized more strongly to the Fl PCR products than the fl PCR products. A full-length cDNA clone identified by this screening exhibited FLS activity when expressed in yeast. FLS gene expression is developmentally regulated during flower development. Antisense expression of an FLS cDNA clone in petunia markedly reduced flavonol synthesis in petals. RFLP mapping showed that the FLS gene is linked to Fl , suggesting that Fl is the structural gene for FLS.  相似文献   

5.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

6.
Petunia hybrida and Citrus paradisi have significantly different flavonoid accumulation patterns. Petunia sp. tend to accumulate flavonol glycosides and anthocyanins while Citrus paradisi is known for its accumulation of flavanone diglycosides. One possible point of regulation of flavanone metabolism is flavanone 3-hydroxylase (F3H) expression. To test whether this is a key factor in the different flavanone usage by Petunia hybrida and Citrus paradisi, F3H mRNA expression in seedlings of different developmental stages was measured using semi-quantitative RT-PCR. Primers were designed to conserved regions of F3H and used to amplify an approximately 350 bp segment for quantitation by PhosphorImaging. Primary leaves of 32 day old grapefruit seedlings and a grapefruit flower bud had the highest levels of F3H mRNA expression. Petunia seedlings had much lower levels of F3H mRNA expression relative to grapefruit. The highest expression in petunia was in primary leaves and roots of 65 day old seedlings. These results indicate that preferential use of naringenin for production of high levels of flavanone glycosides in young grapefruit leaves cannot be attributed to decreased F3H mRNA expression.  相似文献   

7.
The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.  相似文献   

8.
9.
10.
Chalcone synthase-encoding genes (chs) in Petunia hybrida comprise a multigene family. Some of the chs genes have been grouped into a subfamily, based upon their strong cross-hybridization and tight genomic linkage. From genomic libraries eight 'complete' chs genes, two chs gene 5'-fragments and two chs gene 3'-fragments have been isolated. The nucleotide sequence of six complete chs genes is presented and discussed in relation to their evolutionary origin and expression in different tissues. Each member of the family consists of two exons separated by an intron of variable size and sequence, which is located at a conserved position. The chs gene fragments represent single exons. Homology between non-linked chs genes is approx. 80% at the DNA level and restricted to protein-coding sequences. Homology between subfamily members (which are tightly linked) is higher (90-99%) and extends into untranslated regions of the gene, strengthening the view that they arose by recent gene duplications. The chsD gene contains a mutated translation stop codon, suggesting that this is an inactive (pseudo)gene. None of the other members of the gene family exhibits characteristics of a pseudogene, indicating that if gene inactivation has occurred during their evolution, it must characteristics of a pseudogene, indicating that if gene inactivation has occurred during their evolution, it must have been a recent event. Homology at the protein level between some (expressed) chs genes is surprisingly low. The possibility that these genes encode proteins with slightly different enzymatic activities is discussed.  相似文献   

11.
Changes in the response to abiotic stress during the isolation of leaf protoplasts were compared between a recalcitrant species of Brassica napus and regenerating species of Petunia hybrida . Initially, levels of soluble free putrescine (put), spermidine (spd) and spermine (spm) in leaves and protoplasts were determined. The sum of these three polyamines increased in petunia and B. napus leaf protoplasts by 1.6-fold and 1.1-fold, respectively. The soluble free fraction of spd and spm decreased in B. napus but not in petunia protoplasts. During the isolation of leaf protoplasts from B. napus , the ratio of soluble free put to the total PAs almost doubled, but that of spd and spm declined significantly. Petunia leaf protoplasts treated with cyclohexylamine (CHA), an inhibitor of spermidine synthase, accumulated ammonia and soluble putrescine, but lost the soluble spermidine. The soluble polyamine levels of CHA-treated petunia leaf protoplasts corresponded with those in B. napus . Leaves were subjected to abiotic stress during the isolation of protoplasts, namely wounding and osmotic stress which changed soluble free polyamine levels in B. napus and petunia, respectively. Both B. napus and petunia leaf protoplasts showed an increase in ammonia, but total free amino acid content and activation of proteases were only enhanced in B. napus leaf protoplasts. These results suggest that in B. napus wounding initiated senescence of leaf protoplasts during their isolation, leading to a constant production of ethylene early in the culture.  相似文献   

12.
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression of chsA gene in transgenic Petunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal of chsA gene, and transferred the fusion gene into Petunia hybrida via Agrobac-terium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNA in situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.  相似文献   

13.
14.
15.
A cyclin cDNA clone (Pethy;CycB1;1) was isolated from a Petunia hybrida ovary specific cDNA library. Sequence comparison revealed that Pethy;CYCB1;1 protein is highly homologous to mitotic B1 cyclins. Northern analysis and in situ hybridisation experiments showed that its expression is developmentally regulated and restricted to flower organs. We have attempted to define some of the cell division patterns which contribute to shaping each floral organ by analysing Pethy;CycB1;1 expression on Petunia flower sections. While in sepals, epidermis and parenchyma cell division patterns were comparable, there were two distinct cell division patterns in petals. In the epidermis, Pethy;CYCB1;1 expression was found both at the petal tip and along epidermis, whereas in the parenchyma only at the petal tips. In reproductive organs cell divisions were detected only in sporophytic tissues. No signals were detected inside meiotic cells.  相似文献   

16.
A novel 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene of 1.35 kb was cloned from a cosmid library of Halomonas variabilis HTG7, inserted into vector pET-28a (+) and transformed in Escherichia coli BL21 (DE3). EPSPS was over-expressed in soluble form after induction with IPTG at 30 degrees C and it showed a single band in SDS-PAGE, which corresponds to a molecular weight of 51 kD. Deduced amino acid sequence analysis showed that there is little homology with the aroA genes which encode glyphosate-tolerant EPSPS in known sources, such as E. coli K12 and Agrobacterium sp. CP4. The over-expressed EPSPS was purified on nickel-nitrilotriacetic acid resin and detected by Western blotting analysis. Enzyme activity measurements demonstrated that there were 4.27 units/mg in cell extract, compared with 0.049 units/mg of the control. There is an 87-fold increase in specific activity for EPSPS.  相似文献   

17.
The functions of four loci ( An1, An2, An4 , and An6 ) which control pigmentation in flowers of Petunia hybrida have been characterized. Linkage-analysis and molecular complementation experiments showed that the An6 locus contains the structural dfrA gene, encoding the enzyme dihydroflavonol 4-reductase (DFR). Analysis of gus gene expression driven by the dfrA promoter in transgenic plants showed that the dfrA promoter is highly active in the flower corolla, the anthers and seeds and, at a lower level, in ovules and the flower stem. These data are discussed in relation to the expression of other pigmentation genes and the accumulation pattern of anthocyanins. The expression of the dfrA-gus transgene was dependent on the genes an1 (in every tissue), an2 (in the flower limb only) and an4 (in anthers), demonstrating that these genes encode regulatory factors that control dfrA promoter activity.  相似文献   

18.
19.
An anthocyanin 5-O-glucosyltransferase from flowers of Petunia hybrida was purified about 30-fold. Using uridine 5-diphosphoglucose as glucose donor (Km 0.22 mM), the enzyme glucosylated the 3-(p-coumaroyl)-rutinoside derivatives of delphinidin and petunidin (Km 3 M), isolated from pollen of Petunia. Delphinidin 3-rutinoside, cyanidin 3-rutinoside and delphinidin 3-glucoside did not serve as substrates. The glucosylation of petunidin 3-(p-coumaroyl)-rutinoside showed a pH-activity optimum at pH 8.3 and was neither stimulated by Mg2+ or Ca2+, nor inhibited by ethylenediaminetetraacetic acid. After separating the 5-O-glucosyltransferase from the anthocyanidin 3-O-glucosyltransferase by means of chromatofocusing, it was shown that both enzymes exhibit a high degree of positional specificity. The 5-O-glucosyltransferase activity was correlated with the gene An1, but not with the gene Gf.Abbreviations HPLC high performance liquid chromatography - 3GT 3-O-glucosyltransferase - 5GT 5-O-glucosyltransferase - 3RGac 3-(p-coumaroyl)-rutinoside - 3RGac5G 3-(p-coumaroyl)-rutinoside-5-glucoside - UDPGlc uridine 5-diphosphoglucose  相似文献   

20.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号