首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Minute syndrome in Drosophila melanogaster is characterized by delayed development, poor fertility, and short slender bristles. Many Minute loci correspond to disruptions of genes for cytoplasmic ribosomal proteins, and therefore the phenotype has been attributed to alterations in translational processes. Although protein translation is crucial for all cells in an organism, it is unclear why Minute mutations cause effects in specific tissues. To determine whether the heart is sensitive to haplo-insufficiency of genes encoding ribosomal proteins, we measured heart function of Minute mutants using optical coherence tomography. We found that cardiomyopathy is associated with the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. While mutations of genes encoding non-Minute cytoplasmic ribosomal proteins are homozygous lethal, heterozygous deficiencies spanning these non-Minute genes did not cause a change in cardiac function. Deficiencies of genes for non-Minute mitochondrial ribosomal proteins also did not show abnormal cardiac function, with the exception of a heterozygous disruption of mRpS33. We demonstrate that cardiomyopathy is a common trait of the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. In contrast, most cases of heterozygous deficiencies of genes encoding non-Minute ribosomal proteins have normal heart function in adult Drosophila.  相似文献   

2.
干旱胁迫条件下,小麦相关基因受到激活并表达产生干旱胁迫蛋白,主动适应干旱环境、维持个体存活和产量形成。介绍了小麦中一些干旱诱导蛋白及相关基因的研究进展,包括不同小麦品种、胁迫程度、发育阶段的差异性反应和共性特征、对主要干旱信号物质ABA和Ca2+的差异应答、以及新近发现的干旱诱导蛋白及相关基因的生物学特性及主要功能等。对于干旱诱导蛋白来说,研究手段和目标从过去以单向电泳技术为主、揭示蛋白条带的表达差异转到现在以双向电泳技术为主、以揭示蛋白质组中干旱诱导蛋白结构和功能的耦合。对于干旱诱导蛋白相关基因来说,研究内容主要包括功能基因和调控基因两大类,功能基因研究主要集中在LEA蛋白基因和透物质合成酶基因等几大类型上,而调控基因研究主要集中在转录因子和蛋白激酶等相关基因及其作用。对干旱诱导蛋白及相关基因在小麦栽培管理和产量育种中的应用前景展开了讨论。  相似文献   

3.
4.
OmpF and OmpC are major outer membrane proteins. Although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine the difference, a method was developed to construct a series of ompF-ompC chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The genomic structures of these chimeric genes were determined by restriction endonuclease analysis and nucleotide sequence determination. In almost all cases, recombination took place between the corresponding homologous regions of the ompF and ompC genes. Many of the chimeric genes produced proteins that migrated to various positions between the OmpF and OmpC proteins on polyacrylamide gel. On the basis of the results, a domain contributing to the mobility difference the OmpF and OmpC proteins was identified. Some chimeric genes did not accumulate outer membrane proteins, despite the fact that the fusion of the ompF and ompC genes was in frame. Bacterial cells possessing the chimeric proteins were also tested as to their sensitivity to phages which require either OmpF or OmpC as a receptor component. The chimeric proteins were either of the OmpF or OmpC type with respect to receptor activity. Based on the observations, the roles of submolecular domains in the structure, function, and biogenesis of the OmpF and OmpC proteins are discussed.  相似文献   

5.
The ABC model of flower development, established through studies in eudicot model species, proposes that petal and stamen identity are under the control of B-class genes. Analysis of B- and C-class genes in the grass species rice and maize suggests that the C- and B-class functions are conserved between monocots and eudicots, with B-class genes controlling stamen and lodicule development. We have undertaken a further analysis of the maize B-class genes Silky1, the putative AP3 ortholog, and Zmm16, a putative PI ortholog, in order to compare their function with the Arabidopsis B-class genes. Our results show that maize B-class proteins interact in vitro to bind DNA as an obligate heterodimer, as do Arabidopsis B-class proteins. The maize proteins also interact with the appropriate Arabidopsis B-class partner proteins to bind DNA. Furthermore, we show that maize B-class genes are capable of rescuing the corresponding Arabidopsis B-class mutant phenotypes. This demonstrates B-class activity of the maize gene Zmm16, and provides compelling evidence that B-class gene function is conserved between monocots and eudicots.  相似文献   

6.
Phylogenetic analysis of plant basic helix-loop-helix proteins   总被引:14,自引:0,他引:14  
  相似文献   

7.
8.
9.
Comparisons of codon frequencies of genes to several gene classes are used to characterize highly expressed and alien genes on the SYNECHOCYSTIS: PCC6803 genome. The primary gene classes include the ensemble of all genes (average gene), ribosomal protein (RP) genes, translation processing factors (TF) and genes encoding chaperone/degradation proteins (CH). A gene is predicted highly expressed (PHX) if its codon usage is close to that of the RP/TF/CH standards but strongly deviant from the average gene. Putative alien (PA) genes are those for which codon usage is significantly different from all four classes of gene standards. In SYNECHOCYSTIS:, 380 genes were identified as PHX. The genes with the highest predicted expression levels include many that encode proteins vital for photosynthesis. Nearly all of the genes of the RP/TF/CH gene classes are PHX. The principal glycolysis enzymes, which may also function in CO(2) fixation, are PHX, while none of the genes encoding TCA cycle enzymes are PHX. The PA genes are mostly of unknown function or encode transposases. Several PA genes encode polypeptides that function in lipopolysaccharide biosynthesis. Both PHX and PA genes often form significant clusters (operons). The proteins encoded by PHX and PA genes are described with respect to functional classifications, their organization in the genome and their stoichiometry in multi-subunit complexes.  相似文献   

10.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is the bestcharacterized member of the V-ATPase family. Biochemical and genetic screensled to the identification of a large number of genes in yeast, designatedVMA, encoding proteins required to assemble a functional V-ATPase. Atotal of thirteen genes encode subunits of the final enzyme complex. Inaddition to subunit-encoding genes, we have identified three genes that codefor proteins that are not part of the final V-ATPase complex yet required forits assembly. We refer to these nonsubunit Vma proteins as assembly factors,since their function is dedicated to assembling the V-ATPase. The assemblyfactors, Vma12p, Vma21p, and Vma22p are localized to the endoplasmicreticulum (ER) and aid the assembly of newly synthesized V-ATPase subunitsthat are translocated into the ER membrane. At least two of these proteins,Vma12p and Vma22p, function together in an assembly complex and interactdirectly with nascent V-ATPase subunits.  相似文献   

11.
The debate regarding the patenting of genes has extended into the post-genome era. With only approximately 35000 genes deduced from the draft sequence of the human genome, there are fears that a few companies have already gained monopoly on the potential benefits from this knowledge. Nevertheless, it is accepted that proteins determine gene function and function is not readily predicted from gene sequence. Furthermore, genes can encode multiple proteins and a single protein can have multiple functions. Here, we argue that unraveling the intrinsic complexity of proteins and their functions is the key towards determining the utility requirement for patenting protein inventions and consider the possible socioeconomic impact.  相似文献   

12.
13.
The use of the budding yeast Saccharomyces cerevisiae as a simple eukaryotic model system for the study of chromatin assembly and regulation has allowed rapid discovery of genes that influence this complex process. The functions of many of the proteins encoded by these genes have not yet been fully characterized. Here, we describe a high-throughput methodology that can be used to illuminate gene function and discuss its application to a set of genes involved in the creation, maintenance and remodeling of chromatin structure. Our technique, termed E-MAPs, involves the generation of quantitative genetic interaction maps that reveal the function and organization of cellular proteins and networks.  相似文献   

14.
Epigenetic inheritance to maintain the expression state of the genome is essential during development. In Drosophila, the cis regulatory elements, called the Polycomb Response Elements (PREs) function to mark the epigenetic cellular memory of the corresponding genomic region with the help of PcG and trxG proteins. While the PcG genes code for the repressor proteins, the trxG genes encode activator proteins. The observations that some proteins may function both as PcG and trxG member and that both these group of proteins act upon common cis elements indicate at least a partial functional overlap among these proteins. Trl-GAGA was initially identified as a trxG member but later was shown to be essential for PcG function on several PREs. In order to understand how Trl-GAGA functions in PcG context, we have looked for the interactors of this protein. We identified lola like, aka batman, as a strong interactor of GAGA factor in a yeast two-hybrid screen. lolal also interacts with polyhomeotic and, like Trl, both lolal and ph are needed for iab-7PRE mediated pairing dependent silencing of mini-white transgene. These observations suggest a possible mechanism of how Trl-GAGA plays a role in maintaining the repressed state of target genes involving lolal, which may function as a mediator to recruit PcG complexes.  相似文献   

15.
16.
The gene composition of present-day genomes has been shaped by a complicated evolutionary history, resulting in diverse distributions of genes across genomes. The pattern of presence and absence of a gene in different genomes is called its phylogenetic profile. It has been shown that proteins whose encoding genes have highly similar profiles tend to be functionally related: As these genes were gained and lost together, their encoded proteins can probably only perform their full function if both are present. However, a large proportion of genes encoding interacting proteins do not have matching profiles. In this study, we analysed one possible reason for this, namely that phylogenetic profiles can be affected by multi-functional proteins such as shared subunits of two or more protein complexes. We found that by considering triplets of proteins, of which one protein is multi-functional, a large fraction of disturbed co-occurrence patterns can be explained.  相似文献   

17.
Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of photosynthesis in cyanobacteria, algae, and plants. The unusual redox reactions in PSII often lead to damage, degradation, and reassembly of this molecular machine. To identify novel assembly factors, high sensitivity proteomic analysis of PSII purified from the cyanobacterium Synechocystis sp. PCC 6803 was performed. This analysis identified six PSII-associated proteins that are encoded by an operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that are not essential components of the PSII holocomplex but accumulate to high levels in pre-complexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. The operon contains genes with putative binding domains for chlorophylls and bilins, suggesting these proteins may function as a reservoir for cofactors needed during the PSII lifecycle. Genetic deletion of this operon shows that removal of these protein products does not alter photoautotrophic growth or PSII fluorescence properties. However, the deletion does result in decreased PSII-mediated oxygen evolution and an altered distribution of the S states of the catalytic manganese cluster. These data demonstrate that the proteins encoded by the genes in this operon are necessary for optimal function of PSII and function as accessory proteins during assembly of the PSII complex. Thus, we have named the products of the slr0144-slr0152 operon Pap (Photosystem II assembly proteins).  相似文献   

18.
用RACE结合cDNA文库筛选的方法获取新的锌指蛋白基因   总被引:6,自引:1,他引:5  
杜占文  刘立仁  张俊武 《遗传》2002,24(3):329-331
大多数有重要功能的蛋白质都含相应的由保守氨基酸顺序组成的功能结构域。本文首先根据蛋白质功能结构域保守氨基酸序列设计简并引物,用PCR方法扩增出基因EST序列,再利用改进的快速扩增cDNA末端(RACE)方法从cDNA文库中扩增出基因非同源部位,然后以非同源序列为探针,筛选cDNA文库。利用此方法成功地从人骨髓cDNA文库中克隆到几个编码锌指蛋白并代表原有EST的新的全长cDNA。这一策略也应适用于筛选编码具有其他序列保守性功能结构域蛋白的基因。 Abstract:Most of the important functionally proteins contain the corresponding function domains that consist of conserved amino acid sequences.The study provided a method to identify novel genes that encode proteins containing important functionally domains with conserved sequences.First,primers were designed according to the sequence of the cDNA library vector and the ESTs that have been obtained by reverse PCR and degenerate primers encoding Zinc finger domain.The cDNA library DNA was used as template for PCR amplification.The amplified fragment that contains nonhomologous sequences of the cDNA was inserted into pGEM-T easy vector.The fragment was recovered and used as a probe for screening the cDNA library.Several cDNAs with full length that encode proteins with Zinc finger domain and represent the original ESTs have been successfully cloned from a human bone marrow cDNA library.This strategy can also be used in screening genes that encode proteins containing differential function domains with conserved sequences.  相似文献   

19.
20.
The ras superfamily proteins   总被引:12,自引:0,他引:12  
P Chardin 《Biochimie》1988,70(7):865-868
Several recent discoveries indicate that the ras genes, frequently activated to a transforming potential in some human tumours, belong to a large family that can be divided into three main branches: the first branch represented by the ras, ral and rap genes; the second branch, by the rho genes; and the third branch, by the rab genes. The C-terminal end of the encoded proteins always includes a cystein, which may become fatty-acylated, suggesting a sub-membrane localization. The ras superfamily proteins share four regions of high homology corresponding to the GTP binding site; however, even in these regions, significant differences are found, suggesting that the various proteins may possess slightly different biochemical properties. Recent reports show that some of these proteins play an essential role in the control of physical processes such as cell motility, membrane ruffling, endocytosis and exocytosis. Nevertheless, the characterization of the proteins directly interacting with the ras or ras-related gene-products will be required to precisely understand their function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号