首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further analyze the action of copper on brain synaptic mechanisms, the brain dipeptide carnosine (beta-alanyl-L-histidine) was tested in Xenopus laevis oocytes expressing the rat P2X4 or P2X7 receptors. Ten micromolar copper halved the currents evoked by ATP in both receptors; co-application of carnosine plus copper prevented the metal induced-inhibition with a median effective concentration of 12.1 +/- 3.9 and 12.0 +/- 5.5 microm for P2X4 and P2X7, respectively. Zinc potentiated only the P2X4 ATP-evoked currents; carnosine had no effect over this metal. The relative potency and selectivity of classical metal chelators to prevent the copper inhibition was compared between carnosine and penicillamine (PA), bathophenanthroline (BPh) or L-histidine (His). Their rank order of potency in P2X4 and P2X7 receptors was carnosine = PA = His > BPh > Glycine (Gly) and carnosine = BPh = His > PA > Gly, respectively. The potency to prevent the zinc-induced potentiation in the P2X4 receptor was BPh > PA > His; carnosine, Gly and beta-alanine were inactive. Whereas 1-100 microm carnosine or His alone did not modify the ATP-evoked currents, 10-100 microm PA augmented and 100 microm BPh decreased the ATP-evoked currents. Carnosine was able to revert the copper-induced inhibition restoring the maximal ATP gated current in a concentration-dependent manner. Electronic spectroscopy confirm the formation of carnosine-Cu(II) complexes, mechanism that can account for the prevention and reversal of the copper inhibition, revealing its potential in copper intoxication treatment.  相似文献   

2.
The rat ATP P2X4 receptor was expressed in Xenopus laevis oocytes to assess the effect of zinc and copper as possible regulators of purinergic mechanisms. ATP applied for 20 s evoked an inward cationic current with a median effective concentration (EC50) of 21.4+/-2.8 microM and a Hill coefficient (nH) of 1.5+/-0.1. Coapplication of ATP plus 10 microM zinc displaced leftward, in a parallel fashion, the ATP concentration-response curve, reducing the EC50 to 8.4+/-1.8 microM (p < 0.01) without altering the receptor nH. The zinc potentiation was fast in onset, easily reversible, and voltage-independent and did not require metal preexposure. The zinc EC50 was 2-5 microM, with a bell-shaped curve. At concentrations of 100-300 microM, zinc produced less potentiation, and at 1 mM, it inhibited 50% the ATP current. The effect of zinc was mimicked by cadmium. In contrast, copper inhibited the ATP-evoked currents in a time- and concentration-dependent fashion, reducing the maximal current (Imax) without altering the EC50. The copper-induced inhibition was slow in onset, slowly reversible, and voltage-independent. Whereas coapplication of 300 microM copper plus ATP reduced Imax to 36.2+/-5%, the coapplication of, or 60-s preexposure by, 10 microM copper reduced Imax to 79+/-9.2% (p < 0.05) and 39.6+/-8.7% (p < 0.01), respectively. The inhibition was noncompetitive in nature and mimicked by mercury. Cobalt, barium, and manganese did not modify significantly the ATP-evoked current, demonstrating metal specificity. The simultaneous 1-min preapplication of both metals revealed that the 10 microM zinc-induced potentiation was obliterated by 10 microM copper, whereas 30 microM copper not only reduced the potentiation, but inhibited the ATP response. Following coapplication of both metals for 20 s with ATP, at least 100 microM copper was required to counteract the 10 microM zinc-induced potentiation. The simultaneous preincubation with both metals provided evidence for a noncompetitive interaction. We hypothesize the existence of metal binding site(s), which are most likely localized in the extracellular domain of the P2X4 receptor structure. These sites are selective and accessible to extracellular metal applications and bind micromolar concentrations of metals. The present results are compatible with the working hypothesis that trace metals, such as copper and zinc, are physiological modulators of the P2X4 receptor. The modulation of brain purinergic transmission by physiologically and toxicologically relevant trace metal cations is highlighted.  相似文献   

3.
—The distribution of pyruvate kinase (ATP: pyruvate phosphotransferase; EC 2.7.1.40) in several areas of the central nervous system, the ontogenic changes in the cerebro-cortical enzyme, and its modulation by certain metabolites were investigated in the rat. No significant differences in activity of pyruvate kinase in different regions of the nervous system were detected when activity was expressed per g of tissue. Studies on the ontogeny of pyruvate kinase in cerebral cortex revealed extremely low levels of enzymic activity at birth. A two-fold increase occurred between 1 and 20 days of postnatal age, with a further two-fold increase between 20 and 60 days of age. l -Phenylalanine, when added directly into the reaction mixture, produced a dose-dependent inhibition of cerebro-cortical pyruvate kinase; a similar inhibition of the enzyme activity was observed with copper. The inhibition by l -phenylalanine and copper was prevented and reversed by l -alanine. Although the cerebro-cortical enzyme was resistant to thermal inactivation at 37°C, incubation of the enzyme preparation at 55°C for 60 min resulted in approximately 60 per cent inhibition of its activity. Preincubation with l -alanine provided partial protection against thermal inactivation of the enzyme. Although l -alanine exerted no effect on the non-competitive inhibition of pyruvate kinase produced by calcium, such inhibition was prevented and reversed by EDTA. The sulphydryl inhibitor, P-chloromercuribenzoate, produced a dose-dependent inhibition of cerebro-cortical pyruvate kinase, whereas addition of penicillamine resulted in a slight activation of the enzyme. Although inhibition of pyruvate kinase by P-chloromercuribenzoate was unaffected by l -alanine, penicillamine effectively prevented and reversed the inhibition produced by P-chloromercuribenzoate.  相似文献   

4.
[3-H]Epinephrine binding to isolated purified rat liver plasma membranes is a reversible process. An initial peak in binding occurs at about 15 min and a plateau occurs by 50 min. Optimal binding occurred at a membrane protein concentration of 125mug. Rat liver plasma membranes stored at-70 degrees C up to 4 weeks showed no difference in epinephrine binding capacity as compared to control fresh membranes. Epinephrine binding to liver plasma membranes was decreased by 79% by phospholipase A2 (phosphatide acylhydrolase EC 3.1.1.4), 81% by phospholipase C (phosphatidylcholine choline phosphohydrolase EC 3.1.4.3) and 59% by phospholipase D (phosphatidylcholine phosphatidohydrolase EC 3.1.4.4). Trypsin and pronase digestion of the membrane decreased epinephrine binding by 97 and 47% respectively. In the presence of 10-3M Mg-2+ ions, increasing concentrations of QTP decreased epinephrine binding to liver plasma membranes. A maximal effect was demonstrated with 10-5M GTP, representing an inhibition of 52% of the control. In a Mg-2+ -free system, epinephrine binding was unaffected by GTP. However, in a Mg-2+ -free system, increasing concentrations of ATP cause increasing inhibition of hormone binding. ATP at 10-3 M reduced epinephrine binding to 28% of the control. GRP (10-5 M) was shown to inhibit epinephrine uptake rather than epinephrine release from the membrane. [3-H]Epinephrine binding to isolated rat epididymal fat cells shows an initial peak within 5 min followed by a gradual rise which plateaus after 60 min. Epinephrine binding increased nearly linearly with increasing fat cell protein concentration (40-200 mug protein). GTP (10-5 M) and ATP (10-4 M) decreased epinephrine binding to rat epididymal fat cells by 41%. Nearly complete inhibition of binding was demonstrated with 10-2-10-3M ATP. Epinephrine analogs that contain two hydroxyl groups in the 3 and 4 position on the benzene ring act as inhibitors of [3-H]epinephrine binding to rat adipocytes. Alteration of the epinephrine side chain has relatively little influence on binding. Analogs in which one of the ring hydroxyl groups is missing or methylated are poor inhibitors of [3-H]epinephrine binding. Alpha-(phentolamine and phenoxybenzamine) and beta-(propranolol and dichorisoproterenol) adrenergic blocking agents were tested with respect to their ability to influence [3-H]epinephrine binding and their influence on epinephrine-stimulated lipolysis. Only dichloroisoproterenol significantly inhibited epinephrine binding (by 25%). The two beta-adrenergic blocking agents caused an inhibition of epinephrine-stimulated glycerol release, with propranolol being most effective. Phentolamine and phenoxybenzamine had no significant effect on the epinephrine stimulation of glycerol release by fat cells.  相似文献   

5.
Shen JJ  Liu CJ  Li A  Hu XW  Lu YL  Chen L  Zhou Y  Liu LJ 《生理学报》2007,59(6):745-752
本文在培养的大鼠三叉神经节(trigeminal ganglion,TG)神经元上采用全细胞膜片钳技术,探讨大麻素对大鼠TG神经元ATP激活电流(ATP-activated currents,IATP)的影响.结果显示(1)胞外给予ATP,大部分受检细胞(67/75,89.33%)可记录到一个内向电流,且具有剂量依赖性.该电流可被P2X嘌呤受体特异性拮抗剂PPADS所阻断.(2)预加WIN55212-2[大麻素受体1(cannabinoid receptor 1,CB1受体)激动剂]可对IATP产生抑制作用,此作用呈剂量依赖性,并可被CB1受体特异性拮抗剂AM281阻断.预加不同浓度的WIN55212-2(1x10-13、1x10-12、1x10-11、1x10-10、1x10-9和1x10-8mol/L)对IATP(1x10-4mol/L ATP)的抑制作用分别为(8.14±3.14)%、(20.11±2.72)%、(46.62±3.51)%、(72.16±5.64)%、(80.21±2.80)%和(80.59±3.55)%.(3)预加WIN55212-2后IATP的浓度-反应曲线明显下移;最大反应浓度时的IATP幅值减小了(58.02±4.21)%,而阈值基本不变;预加WIN55212.2前后曲线的EC50值非常接近(1.15x10-4mol/L vs 1.27x10-4 mol/L).(4)预加forskolin[腺苷酸环化酶(adenylyl cyclase,AC)激动剂]或8-Br-cAMP可以逆转WIN55212-2对IATP的抑制作用.以上结果表明,大麻素可能作用于CB1受体,通过抑制AC-cAMP-PKA途径发挥对IATP的抑制作用.  相似文献   

6.
The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1--2 microM). The IC(50) (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nM; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mM) and CoASH (coenzyme A; 0.3 mM), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 microM) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA.  相似文献   

7.
The interaction was studied of ceruloplasmin (Cp, EC 1.16.3.1), a copper-containing plasma protein, with two synthetic peptides P15 and P16 whose structures correlate with those of the noncytosolic regions of the copper transfer P1 type ATPase (ATP7A), apparently encoded by the Menkes disease gene (Atp7a). Pentadecapeptide P15 and hexadecapeptide P16 were synthesized using the solid phase method. They correspond to fragments of two extracellular loops ATP7A, of which one loop is apparently involved in the copper ion transfer (P16) whereas the otheris not (P15). The protein footprinting showed that P16 binds to a fragment of the ceruloplasmin domain 6. Kinetics of the ceruloplasmin-P16 binding was studied by affinity chromatography on P16 immobilized on a macroporous disk, and theK d value (1.5¢10−6 M) of this interaction was determined. The ATP7A involvement in the copper ion transfer to nonhepatocyte cells is discussed. Deceased.  相似文献   

8.
Sea urchin sperm flagellar ATPase (EC 3.6.1.3) has magnesium-ATP as an effective substrate and is inhibited by free ATP. The inhibition is prevented by high concentration of KCl or NaCl. 0.4 M KCl extracts 48% of ATPase activity from axoneme. The 0.4 M KCl extract and 0.4 M KCl-treated axoneme are also inhibited by free ATP and this inhibition is reversed by KCl. Dynein purified twice by sucrose density gradient centrifugation is also inhibited by free ATP; this inhibition is also reversed by KCl.  相似文献   

9.
To further explore the evolution of receptors for parathyroid hormone (PTH) and PTH-related peptide (PTHrP), we searched for zebrafish (z) homologs of the PTH/PTHrP receptor (PTH1R). In mammalian genes encoding this receptor, exons M6/7 and M7 are highly conserved and separated by 81-84 intronic nucleotides. Genomic polymerase chain reaction using degenerate primers based on these exons led to two distinct DNA fragments comprising portions of genes encoding the zPTH1R and the novel zPTH3R. Sequence comparison of both full-length teleost receptors revealed 69% similarity (61% identity), but less homology with zPTH2R. When compared with hPTH1R, zPTH1R showed 76% and zPTH3R 67% amino acid sequence similarity; similarity with hPTH2R was only 59% for both teleost receptors. When expressed in COS-7 cells, zPTH1R bound [Tyr(34)]hPTH-(1-34)-amide (hPTH), [Tyr(36)]hPTHrP-(1-36)-amide (hPTHrP), and [Ala(29),Glu(30), Ala(34),Glu(35), Tyr(36)]fugufish PTHrP-(1-36)-amide (fuguPTHrP) with a high apparent affinity (IC(50): 1.2-3.5 nM), and was efficiently activated by all three peptides (EC(50): 1.1-1.7 nM). In contrast, zPTH3R showed higher affinity for fuguPTHrP and hPTHrP (IC(50): 2.1-11.1 nM) than for hPTH (IC(50): 118.2-127.0 nM); cAMP accumulation was more efficiently stimulated by fugufish and human PTHrP (EC(50): 0.47 +/- 0.27 and 0.45 +/- 0.16, respectively) than by hPTH (EC(50): 9.95 +/- 1.5 nM). Agonist-stimulated total inositol phosphate accumulation was observed with zPTH1R, but not zPTH3R.  相似文献   

10.
The P2X7 receptor is a non-selective cationic channel activated by extracellular ATP, belonging to the P2X receptor family. To assess the role of extracellular histidines on the allosteric modulation of the rat P2X7 receptor by divalent metals (copper, zinc and magnesium) and protons, these amino acid residues were singly substituted for corresponding alanines. Wild-type and mutated receptors were injected to Xenopus laevis oocytes; metal-related effects were evaluated by the two-electrode voltage-clamp technique. Copper inhibited the ATP-gated currents with a median inhibitory concentration of 4.4 +/- 1.0 micromol/L. The inhibition was non-competitive and time-dependent; copper was 60-fold more potent than zinc. The mutant H267A, resulted in a copper resistant receptor; mutants H201A and H130A were less sensitive to copper inhibition (p < 0.05). The rest of the mutants examined, H62A, H85A, and H219A, conserved the copper-induced inhibition. Only mutants H267A and H219A were less sensitive to the modulator action of zinc. Moreover, the magnesium-induced inhibition was abolished exclusively on the H130A and H201A mutants, suggesting that this metal may act at a novel cationic modulator site. Media acidification inhibited the ATP-gated current 87 +/- 3%; out of the six mutants examined, only H130A was significantly less sensitive to the change in pH, suggesting that His-130 could be involved as a pH sensor. In conclusion, while His-267 is critically involved in the copper or zinc allosteric modulation, the magnesium inhibitory effects is related to His-130 and His-201, His-130 is involved in proton sensing, highlighting the role of defined extracellular histidines in rat P2X7 receptor allosteric modulation.  相似文献   

11.
ATP promoted biphasic effects on both basal and fMLP-stimulated arachidonic acid (AA) release in neutrophil-like HL60 cells: stimulation in the micromolar range (EC50 = 3.2 +/- 0.9 microM) and inhibition at higher concentrations (EC50 = 90 +/- 11 microM). ATP also inhibited UTP- and platelet activating factor-stimulated AA release. Only stimulatory effects of ATP on basal or fMLP-stimulated phospholipase C were observed. The inhibitory effect of ATP on AA release was not due to reacylation of released AA, chelation of extracellular Ca2+, cell permeabilization, or changes in the rise of [Ca2+]i induced by agonist. The inhibition was rapid, being detected within 5-15 s. The inhibitory effect of ATP on fMLP-stimulated AA release could be desensitized by pretreatment of the cells with 2 mM ATP, but not 20 microM ATP, the concentration that resulted in maximal release of AA and inositol phosphates. The inhibition by ATP was neither dependent on generation of adenosine by ATP hydrolysis nor the result of direct interaction of ATP with P1 purinergic receptors. Among other nucleotides tested (CTP, GTP, ITP, TTP, XTP, adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP), adenyl-5'-yl imidodiphosphate (AMP-P(NH)P), ADP, adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), and UTP), only UTP and ATP gamma S displayed biphasic effects with potencies and efficacies almost identical to those of ATP. The other nucleotides only exhibited stimulatory effects (EC50 = 60-300 microM). The results are consistent with a model of dual regulation of AA release by two distinct subtypes of P2U receptors in HL60 cells.  相似文献   

12.
Aberrant metal binding by prion protein in human prion disease   总被引:9,自引:0,他引:9  
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker.  相似文献   

13.
Both human (h) and chicken (Ch) prion proteins (PrP) bind copper ions within the so called “tandem repeat” N-terminal region. Outside this region, hPrP possesses two additional copper binding sites, localized at His-96 and His-111 in the so called “amylodogenic” or neurotoxic region (residues 91-126). Also ChPrP possesses a similar region (ChPrP105−140) containing two His (His-110 and His-124) and an identical hydrophobic tail of 15 amino acids rich in Ala and Gly. The copper binding abilities within such region of ChPrP were investigated by NMR, CD and potentiometry using Ni2+ as diamagnetic probe. The formation of diamagnetic metal complexes allowed to monitor the chemical shift and signal intensity variations and to determine the structural and kinetic features of the His-110 and His-124 metal binding sites. Finally a comparison between the hPrP and ChPrP metal binding abilities was performed. We found that the two prion proteins exhibited different copper and nickel preferences with the favoured metal binding sites localized at opposite His: His-110 for ChPrP, and His-111 for hPrP.  相似文献   

14.
Increasing evidence supports an important role for metals in neurobiology. In fact, copper binding proteins that form bioinorganic complexes are able to display oxidant or anti-oxidant properties, which would impact on neuronal function or in the triggering of neurodegenerative process. Two proteins related to neurodegenerative diseases have been described as copper binding proteins: the amyloid precursor protein (APP), a protein related to Alzheimer's disease, and the Prion protein (PrP), related to Creutzfeldt-Jakob disease. We used different synthetic peptides from APP and PrP sequences in order to evaluate the ability to reduce copper. We observed that APP135–156, amyloid--peptide (A1–40), and PrP59–91 all have copper reducing ability, with the APP135–156 peptide being more potent than the other fragments. Moreover, we identify His, Cys and Trp residues as key amino acids involved in the copper reduction of A, APP and PrP, respectively. We postulated, that in a cellular context, the interaction of these proteins with copper could be necessary to reduce copper on plasma membrane, possibly presenting Cu(I) to the copper transporter, driving the delivery of this metal to antioxidant enzymes. Moreover, protein-metal complexes could be the catalytic centers for the formation of reactive oxygen species involved in the oxidative damage present both in Alzheimer's and Prion disease.  相似文献   

15.
Prion protein (PrP) binds copper and exhibits superoxide dismutase-like activity, while the roles of PrP in copper homeostasis remain controversial. Using Zeeman graphite furnace atomic absorption spectroscopy, we quantified copper levels in immortalized PrP gene (Prnp)-deficient neuronal cells transfected with Prnp and/or Prnd, which encodes PrP-like protein (PrPLP/Dpl), in the presence or absence of oxidative stress induced by serum deprivation. In the presence of serum, copper levels were not significantly affected by the expression of PrP and/or PrPLP/Dpl, whereas serum deprivation induced a decrease in copper levels that was inhibited by PrP but not by PrPLP/Dpl. The inhibitory effect of PrP on the decrease of copper levels was prevented by overexpression of PrPLP/Dpl. These findings indicate that PrP specifically stabilizes copper homeostasis, which is perturbed under oxidative conditions, while PrPLP/Dpl overexpression prevents PrP function in copper homeostasis, suggesting an interaction of PrP and PrPLP/Dpl and distinct functions between PrP and PrPLP/Dpl on metal homeostasis. Taken together, these results strongly suggest that PrP, in addition to its antioxidant properties, plays a role in stabilizing cellular copper homeostasis under oxidative conditions.  相似文献   

16.
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.  相似文献   

17.
The effects of nalidixic acid in vitro on deoxyribonucleic acid (DNA)- polymerase (deoxyribonucleosidetriphosphate: DNA deoxynucleotidyltransferase, EC 2.7.7.7), deoxyribonucleotide kinases (ATP: deoxymono- and diphosphate phosphotransferases), and deoxyribosyl transferase (nucleoside: purine deoxyribosyltransferase, EC 2.4.2.6) were examined employing partially purified and crude extracts of Escherichia coli ATCC 11229 and E. coli 15TAU. Nalidixic acid had no inhibitory effect on the DNA-polymerase of the wild-type strain E. coli ATCC 11229 at concentrations of 1.4 x 10(-3) to 2.8 x 10(-3)m. No inhibition of deoxyribonucleotide kinase activity was observed at concentrations of nalidixic acid ranging from 2 x 10(-3) to 8.6 x 10(-3)m. Nalidixic acid (0.43 x 10(-4) to 0.43 x 10(-3)m) had no inhibitory effect on the deoxyribosyl transferase activity of crude extracts obtained from E. coli ATCC 11229 or E. coli 15TAU. Analytical CsCl density gradient centrifugation demonstrated that the DNA obtained after treatment of E. coli 15TAU with nalidixic acid was not cross-linked. These results suggest that the prevention of DNA synthesis in vivo by nalidixic acid is not attributable to inhibition of DNA polymerase, deoxyribonucleotide kinase, deoxyribosyl transferase, or to cross-linking of the DNA of treated cells.  相似文献   

18.
Two enzymes of polyisoprenoid synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) and mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36), are present in the microsomal and soluble fractions of Neurospora crassa, respectively. HMG CoA reductase specifically uses NADPH as reductant and has a K(m) for dl-HMG CoA of 30 micro M. The activities of HMG CoA reductase and mevalonate kinase are low in conidia and increase threefold during the first 12 hr of stationary growth. Maximum specific activities of both enzymes occur when aerial hyphae and conidia first appear (2 days), but total activities peak later (3-4 days). Addition to the growth media of ergosterol or beta-carotene, alone or in combination, does not affect the specific or total activity of either enzyme. The mevalonate kinase of N. crassa, purified 200-fold to a specific activity of 5 micro moles/min/mg, is free from HMG CoA reductase, phosphomevalonate kinase, ATPase, adenylate kinase, and NADH oxidase activities. Mevalonate kinase specifically requires ATP as cosubstrate and exhibits a marked preference for Mg(2+) over Mn(2+), especially at high ratios of divalent metal ion to ATP. Kinase activity is inhibited by p-hydroxymercuribenzoate, and this inhibition is partially prevented by mevalonate or MgATP. Optimum activity occurs at pH 8.0-8.5 and at about 55 degrees C. The Neurospora kinase, like that of hog liver, has a sequential mechanism for substrate addition. The Michaelis constants obtained were 2.8 mM for dl-mevalonate and 1.8 mM for MgATP(-2). Geranyl pyrophosphate is an inhibitor competitive with MgATP (K(i) = 0.11 mM).  相似文献   

19.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

20.
Dictyostelium discoideum amoebae showed an uncommon resistance to Cu(2+), as pointed out through cell growth rate (EC(50) = 469 +/- 30 microM) and the neutral red cytotoxicity assay (EC(50) = 334 +/- 45 microM). Although no evidence of Cu-inducible metallothionein was found, Cu-dependent ATPase activity was cytochemically detected on pelletted, resin-embedded amoebae. This activity required Cu(2+) in the incubation medium, was sensitive to TPEN, vanadate and temperature, and showed dose-dependent increase after exposure of amoebae to 10-500 microM Cu(2+) for 7 days. Accordingly, immunofluorescence and Western blotting revealed the occurrence of a Cu-inducible, putative homologue of human Menkes (MNK) Cu-P-type ATPase. To verify if Cu-ATPase is involved in copper resistance, amoebae were exposed to low concentrations of Cu(2+) and vanadate followed by the neutral red assay. Exposure to either treatment showed no effect, while a combination caused a dramatic increase of Cu toxicity, possibly depending on Cu-ATPase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号