首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity and population structure of Tomicus piniperda was assessed using mitochondrial sequences on 16 populations sampled on 6 pine species in France. Amplifications of Internal transcribed space 1 (ITS1) were also performed. Our goals were to determine the taxonomic status of the Mediterranean ecotype T. piniperda destruens, and to test for host plant or geographical isolation effect on population genetic structure. We showed that T. piniperda clusters in two mtDNA haplotypic groups. Clade A corresponds to insects sampled in continental France on Pinus sylvestris, P. pinaster and P. uncinata, whereas clade B gathers the individuals sampled in Corsica on P. pinaster and P. radiata and in continental France on P. pinea and P. halepensis. Insects belonging to clade A and clade B also consistently differ in the length of ITS1. Individuals belonging to both clades were found once in sympatry on P. pinaster. Genetic distances between clades are similar to those measured between distinct species of Tomicus. We concluded that clade B actually corresponds to the destruens ecotype and forms a good species, T. destruens. Analyses of molecular variance ( amova ) were conducted separately on T. destruens and T. piniperda to test for an effect of either geographical isolation or host species. Interestingly, the effect of host plant was significant for T. piniperda only, while the effect of geographical isolation was not. Pine species therefore seems to act as a significant barrier to gene flow, even if host race formation is not observed. These results still need to be confirmed by nuclear markers.  相似文献   

2.
We investigated here the relation of environmental variables with the distribution of mitochondrial lineages using a bark beetle species of Mediterranean distribution as a model. We analysed a total number of 460 DNA sequences of Tomicus destruens provided by intensive and extensive collection and GenBank entries. We combined phylogeography and regression models to study the role of five environmental predictors at fine scale in the distribution of a local genealogy. The analysis revealed a high genetic diversity, with 52 haplotypes present in Sierra Espuña forest (SE Spain) and 21 haplotypes in the other 14 Spanish populations, all included in the western clade of the Mediterranean phylogeography of the species. We found a micro‐distribution of the species related to altitude and putative niche segregation between lineages associated with the micro‐environmental conditions of their host pine trees. We compared the phylogeographic hypothesis obtained here with the phylogeography obtained integrating our data with all data published elsewhere. Here, we demonstrate a relation between the environmental heterogeneity and the haplotypic diversity at Mediterranean Basin scale. This analysis allows us to support the evolutionary scenario where the phylogeography and current molecular diversity of T. destruens is a consequence of the recolonization from two principal refugia at both extremes of the Mediterranean Basin and, according to our data, we propose that the heterogeneity of habitats allows fixation of the mitochondrial lineages.  相似文献   

3.
1 The Mediterranean pine shoot beetle Tomicus destruens has long been indistinguishable from its congeneric Tomicus piniperda. Both species attack pines, and can be found in sympatry. The geographical distribution of T. destruens is still unclear in most of the Mediterranean Basin. 2 We aimed to describe the geographical distribution and zones of sympatry of both species in the Iberian Peninsula and France, and to study the molecular phylogeographical pattern of T. destruens. 3 Tomicus spp. adults were sampled in Portugal, Spain and France, and a portion of the mitochondrial genes COI and COII was sequenced for 84 individuals. Sequences were aligned to a data set previously obtained from French localities. 4 Tomicus destruens was found in all populations, except for one locality in Portugal and in the Landes (France). It was in sympatry with T. piniperda in two locations on Pinus pinaster and one location on Pinus radiata. 5 Within‐population genetic diversity was high, but we found a significant pattern of spatial distribution of genetic variation, as well as a significant effect of the host tree. 6 The data suggest the existence of two glacial refugia, from which T. destruens recolonized its current range. One refugium was located in Portugal where the beetle probably evolved on P. pinaster. The corresponding haplotypes show a West–East frequency gradient. The other refugium was probably in the eastern range, where the beetles evolved on Pinus halepensis and P. pinea. The corresponding haplotypes show an East–West frequency gradient.  相似文献   

4.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

5.
云南切梢小蠹对云南松树的蛀干危害及致死机理   总被引:2,自引:0,他引:2  
吕军  叶辉  段焰青  廖周瑜  母其爱 《生态学报》2010,30(8):2100-2104
蛀干危害是云南切梢小蠹致死云南松树的关键环节。通过控制云南切梢小蠹蛀干密度,对云南切梢小蠹在自然条件下蛀干行为与危害进行了首次探讨。结果表明,云南切梢小蠹蛀干密度与云南松存活率呈负相关,蛀干密度直接决定云南松死亡或存活。研究发现,蛀干密度115坑/m2是云南松树的最低致死密度阈值,云南松树在蛀干密度低于26.4坑/m2情况下存活,在26.4-115坑/m2有部分存活,超过115坑/m2以后将被害致死。云南切梢小蠹对树干攻击形成有卵和无卵两类坑道。形成无卵坑道的蛀干攻击可导致树势衰弱,形成有卵坑道的蛀干危害严重破坏了韧皮组织,是导致云南松死亡的直接原因。  相似文献   

6.
Abstract
  • 1 Morphological characters were elaborated and part of the mitochondrial COI gene was sequenced in order to facilitate the determination of the three European pine bark beetles Tomicus piniperda, T. destruens and T. minor. The sequence information also provided the first information on the phylogenetic and phylogeographical relationships of these species.
  • 2 Three hair rows were found on the antennal club of T. destruens between the second and third suture. Tomicus piniperda had only one row. Three different hair types were detected on the elytra – two hair types were found on T. piniperda, whereas the third hair type was only detected on the elytra of T. destruens.
  • 3 The COI region (445 bp) revealed high sequence divergence among T. destruens, T. piniperda and T. minor. The three species proved to be monophyletic species with 16.98–19.23% sequence divergence. A phylogenetic approach placed T. minor and T. destruens as sister taxa, which contradicts the morphological findings.
  • 4 European populations of T. piniperda shared two haplotypes, indicating a homogenous distribution of the genotypes. In the American populations only one of these European haplotypes was found. The Greek, Italian and Spanish T. destruens populations revealed three population‐specific haplotypes, indicating restricted gene flow.
  • 5 Species‐specific primers were designed to allow a rapid and definitive determination of the two sibling Tomicus species by PCR.
  相似文献   

7.
Chloroplast DNA (cpDNA) haplotype variation is compared among alpine and prairie/montane species of Packera from a region in southwestern Alberta that straddles the boundary of Pleistocene glaciation. The phylogeny of the 15 haplotypes identified reveals the presence of two groups: one generally found in coastal and northern species and the other from species in drier habitats. The presence of both groups in all four species and most populations from southwestern Alberta is evidence of past hybridization involving species or lineages that may no longer be present in the region. With the exception of the alpine P. subnuda (phiST = 1.0), interpopulational subdivision of haplotype variation is low (phiST < 0.350), suggesting that interpopulational gene flow is high. However, based on haplotype distribution patterns, we propose that Pleistocene hybridization and incomplete lineage sorting have resulted in reduced subdivision of interpopulational variation so that gene flow may not be as high as indicated. Drift has been more important in the alpine species populations, especially P. subnuda.  相似文献   

8.
云南横坑切梢小蠹生物学研究   总被引:3,自引:0,他引:3  
叶辉  吕军 《昆虫学报》2004,47(2):223-228
横坑切梢小蠹Tomicus minor (Hartig)是云南松Pinus yunnanensis Franchet的主要次期性害虫之一。1980年以来,该虫与纵坑切梢小蠹T. piniperda(L.)一起在中国西南部大量发生,导致数十万公顷云南松林受害。本文报道了横坑切梢小蠹在云南地区的生活史、生长、发育、繁殖等生物学特征。横坑切梢小蠹年生活史为一代,前后两代在冬春季有部分重叠。成虫羽化于4月下旬开始陆续,5 月下旬结束。成虫羽化后即飞到树冠上蛀食枝梢,直到11月发育成熟,开始繁殖。在此期间,每头成虫可以蛀食4~6个枝梢。横坑切梢小蠹在云南没有越冬习性。繁殖期从11月至次年3月。成虫主要在已经受到纵坑切梢小蠹危害的树木的中、下部产卵。繁殖期较纵坑切梢小蠹约迟1周。由于横坑切梢小蠹从枝梢到树干对云南松持续危害,对树木的危害性较在其它地区更为严重。横坑切梢小蠹利用受到纵坑切梢小蠹蛀害的树木繁殖产卵,加强了蠹虫对云南松树的危害,加速了受害树木的死亡进程。横坑切梢小蠹的上述生物生态学特征是该虫对云南松造成严重危害的重要原因。从横坑切梢小蠹虫体和虫坑中检测到伴生真菌云南半帚孢Leptographium yunnanensis。横坑切梢小蠹对该菌的带菌率在蛀梢期为11.5%;在蛀干中期约为10%~26%。  相似文献   

9.
The distribution pattern of mtDNA haplotypes in distinct populations of the glacial relict crustacean Saduria entomon was examined to assess phylogeographic relationships among them. Populations from the Baltic, the White Sea and the Barents Sea were screened for mtDNA variation using PCR‐based RFLP analysis of a 1150 bp fragment containing part of the CO I and CO II genes. Five mtDNA haplotypes were recorded. An analysis of geographical heterogeneity in haplotype frequency distributions revealed significant differences among populations. The isolated populations of S. entomon have diverged since the retreat of the last glaciation. The geographical pattern of variation is most likely the result of stochastic (founder effect, genetic drift) mechanisms and suggests that the haplotype differentiation observed is probably older than the isolation of the Baltic and Arctic seas.  相似文献   

10.
The phylogeography of Atlantic brown trout ( Salmo trutta ) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 904–917.  相似文献   

11.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.  相似文献   

12.
The Mediterranean pine shoot beetle Tomicus destruens is one of the most damaging bark beetles attacking Mediterranean pine forests in southern Europe and north Africa. We studied the attractiveness of the host volatiles α-pinene and ethanol at a range of release rates, alone or in combination, to T. destruens , in order to develop an attractive lure for the management of this beetle. T. destruens was attracted slightly to the host volatile α-pinene, but a strong synergistic effect was found in the attraction towards monoterpene when ethanol was added to the bait. The highest catches of T. destruens were obtained by the optimal blend releasing 300 mg/day of α-pinene and 900 mg/day of ethanol. In contrast to data reported for the related species T. piniperda , Mediterranean pine shoot beetles were clearly attracted to baits releasing ethanol alone (1350 mg/day). trans -Verbenol, which was also added to host volatiles in some tests, did not affect the response. The use of the attractive blend proposed would have a low impact on the natural enemy population of Thanasimus formicarius because of asynchronies in flight periods. Other non-target insects, such as the facultative predator or competitor Oxipleurus nodieri , were also significantly attracted. These results allow the development of an operative lure for the effective monitoring of T. destruens , although improvements by the addition of other host volatiles should be studied.  相似文献   

13.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

14.
  • 1 Various factors such as climate and resource availability influence the geographical distributions of organisms. Species sensitive to small temperature variations are known to experience rapid distribution shifts as a result of current global warming, sometimes leading to new threats to agriculture and forests. Tomicus piniperda and Tomicus destruens (Coleoptera, Curculionidae, Scolytinae) cause economic damage to pines in Europe and around the Mediterranean Basin. However, their respective potential distributions have not yet been studied at a large scale. The present study aimed to investigate the influence of climatic and host factors on the geographical distributions of both Tomicus species in Europe and around the Mediterranean Sea, and to establish maps of suitable areas.
  • 2 Using 114 published localities where the presence or absence of both species was unambiguously recorded, we gathered WorldClim meteorological records to correlate the occurrence of insects with bioclimatic variables and to build potential distribution maps.
  • 3 The two studied Tomicus species presented parapatric distributions and opposite climate demands, with T. destruens occurring in locations with warmer temperatures, whereas T. piniperda occurs under a colder climate. Amongst the investigated climate variables, temperature appeared to be most correlated with both species distributions.
  • 4 The potential ranges of both species were further restricted by the availability of pine hosts. It appeared that setting new pine plantations in regions where T. destruens or T. piniperda are still absent could favour a rapid expansion of their distributions. Our data will be useful when aiming to apply management strategies adapted to each species, and to forecast their potential range expansions/contractions as a result of climate warming.
  相似文献   

15.
The Balkan Peninsula is one of three major European refugial areas. It has high biodiversity and endemism, but data on the age and origin of its fauna, especially endemics, are limited. Mitochondrial sequence data (COI and 16S genes) were used to study the population structure and phylogeography of the caddisfly Drusus croaticus and the phylogeny and divergence of seven other Drusus species, mostly range-restricted endemics of the Dinaric region of the Balkan Peninsula. The divergence of D. croaticus populations in Croatia and allopatric Drusus species in Bosnia dated to the Pleistocene, showing the importance of this time period for the origin and diversification of Balkan endemic taxa. The divergence of more distantly related species dated to the Late Miocene/Early Pliocene. Population genetic and phylogeographic analysis of 115 individuals from 11 populations of D. croaticus revealed a high level of genetic differentiation and absence of gene flow between populations separated by more than 10 km. The existence of allopatrically fragmented lineages in D. croaticus and the endemic Bosnian species is most likely the result of long-term isolation in multiple microrefugia, probably due to the specific habitat requirements and life-history traits of Drusinae coupled with the topographic complexity and historical changes in geomorphology of the region. Overall, these findings shed light on the processes generating the high genetic complexity of this refugial region that parallels the 'refugia within refugia' pattern widely reported from the Iberian refugium.  相似文献   

16.
The leaf beetle genus Calligrapha is one of the few examples of animals with several obligate unisexual, female‐only species. Previous work showed that each one arose independently from interspecific hybridization events involving different species. However, all of them clustered in a single mtDNA clade together with some individuals of the parental bisexual species, which appeared as deeply polyphyletic in the mtDNA genealogy of the genus. The dating of these splits using a molecular clock placed them in the Quaternary and it was hypothesized that climatic change during this period may have favored range expansions and secondary contacts required for hybridization. In this work, we test this hypothesis and the origins of unisexuality in Calligrapha examining the diversity of mitochondrial (cox1) and nuclear (wingless, Wg) genes and the Bayesian continuous mtDNA phylogeography of a sample of more than 500 specimens of two bisexual species of Calligrapha at a continental scale and two unisexual species derived from them. Besides a major topological difference, whereby each bisexual species is monophyletic for Wg but paraphyletic for cox1, both gene datasets are consistent with a minimum of seven evolutionary lineages, coherent with geography and consistent with an ordered expansion to occupy their current ranges. The results also imply their survival in well‐established glacial refuges during the Last Glacial Maximum (LGM). Thus, for bisexual C. multipunctata there are two main, southern and northern lineages. The southern lineage expanded its range in two evolutionary branches, to the Rocky Mountains and to the northern Mississippi and Ohio River basins, respectively. The northern lineage has one branch in the Upper Mississippi and one that expanded west to the Pacific Northwest and east to the northeastern North Atlantic, finding refuge in both areas. These major lineages are parapatric in the Northern Great Plains, an area consistent with them having found refuge in the so‐called Driftless region during the LGM. For bisexual C. philadelphica, one northern lineage expanded west from the northern Appalachians and one east and southwest along the axis of the Appalachians, and the timing of events is consistent with their persistence in glacial refugia at both sides of the main Great Lakes lobe of the Laurentide Ice Sheet. There is evidence that the northeastern North Atlantic lineages of both species hybridized at the edge of their ranges after the LGM. The additional, divergent mtDNA lineage of these species shows evidence of range expansions of two lineages, one for each species, in an area south of the Laurentide Ice Sheet, and giving origin to the unisexual species by way of hybridization with other species in the Alleghanian region after the LGM. Interestingly, the individuals of supposedly bisexual species in this clade are all females. This suggests that unisexuality actually predates the origin of unisexual taxa in this system and that some bisexual species in Calligrapha may be species complexes instead, with cryptic species differing in their reproductive mode.  相似文献   

17.
Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America.  相似文献   

18.
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed‐dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3–4) and paternally inherited, pollen‐ and seed‐dispersed chloroplast DNA (cpDNA) (rpl16 and trnS‐trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (GST = 0.738, NST = 0.771) indicating low levels of seed‐based gene flow and significant phylogeographical structure (NST > GST, P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north–central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north‐central part of the species’ range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north‐central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among‐population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.  相似文献   

19.
Aim Palaeontologial data suggest that all temperate forest species in northern China migrated southwards during the Last Glacial Maximum (LGM) and recolonized post‐glacially within the Holocene. We tested this assumption using phylogeographical studies of a temperate deciduous shrub species (Ostryopsis davidiana Decne., Betulaceae), which has a wide distribution in northern China. Location Northern China. Methods We sequenced two chloroplast DNA (cpDNA) fragments (trnL–trnF and psbA–trnH, together about 1300 bp in length) of 294 plants from 21 populations across the total distribution range of this species. We used maximum parsimony and haplotype network methods to construct phylogenetic relationships among haplotypes. Results The analysis of cpDNA variation identified eight haplotypes. A single haplotype was fixed in all populations except for one population that was polymorphic, having two haplotypes. The population subdivisions were extremely high (GST = 0.972 and NST = 0.974), suggesting very low gene flow between populations. Haplotypes clustered into two tentative clades, both of which occur in the southern region of the species’ range but only one of which occurs in the northern region. Across the sampled populations, the haplotype distributions were differentiated geographically. Main conclusions Our analyses suggest that multiple refugia were maintained across the range of O. davidiana in both northern (north of the Qing Mountains) and southern (south of the Qing Mountains) regions during the LGM rather than that the species survived only in the south and subsequently colonized northwards. The extremely low within‐population diversity of this species suggests strong bottleneck or founder effects within each fragmented region during the Quaternary climatic oscillations. These findings provide important clues for understanding range shifts and changes in within‐ and/or between‐population genetic diversity of temperate forests in response to past climatic oscillations in northern China.  相似文献   

20.
L A Lait  T M Burg 《Heredity》2013,111(4):321-329
The population genetic structure of northern boreal species has been strongly influenced both by the Quaternary glaciations and the presence of contemporary barriers, such as mountain ranges and rivers. We used a combination of mitochondrial DNA (mtDNA), nuclear microsatellites and spatial distribution modelling to study the population genetic structure of the boreal chickadee (Poecile hudsonicus), a resident passerine, and to investigate whether historical or contemporary barriers have influenced this northern species. MtDNA data showed evidence of eastern and western groups, with secondary admixture occurring in central Canada. This suggests that the boreal chickadee probably persisted in multiple glacial refugia, one in Beringia and at least one in the east. Palaeo-distribution modelling identified suitable habitat in Beringia (Alaska), Atlantic Canada and the southern United States, and correspond to divergence dates of 60–96 kya. Pairwise FST values for both mtDNA and microsatellites were significant for all comparisons involving Newfoundland, though mtDNA data suggest a more recent separation. Furthermore, unlike mtDNA data, nuclear data support population connectivity among the continental populations, possibly due to male-biased dispersal. Although both are significant, the isolation-by-distance signal is much stronger for mtDNA (r2=0.51) than for microsatellites (r2=0.05), supporting the hypothesis of male-biased dispersal. The population structure of the boreal chickadee was influenced by isolation in multiple refugia and contemporary barriers. In addition to geographical distance, physical barriers such as the Strait of Belle Isle and northern mountains in Alaska are restricting gene flow, whereas the Rocky Mountains in the west are a porous barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号