首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(6):325-332
In this study we have examined the effect of propionyl-L-carnitine (PC) on rat spinal cord ischaemia and post-ischaemic reperfusion injury by evaluating two lipid peroxidation indices, thiobarbituric acid reactive substances (TBARS) and diene conjugation, before and after the addition of an ADP-Fe+2 complex to spinal cord homogenates. Aerobic, ischaemic, and post ischaemic reperfusion rat spinal cord homogenates from PC treated and untreated animals did not show any statistically significant difference in their TBARS and conjugated diene content. The addition of the ADP-Fe+2 complex to these homogenates resulted in an increased production of both the lipid peroxidation indices, though the magnitude of such formation was related to the type of experimental intervention. The post-ischaemic reperfusion samples of untreated rats showed the highest TBARS and conjugated diene content, while ischaemic samples in either treated and untreated rats did not show any statistically significant difference with respect to the aerobic samples. The post-ischaemic reperfusion samples of treated rats showed a statistically significant decrease of TBARS and conjugated diene production in comparison to the untreated samples. In addition, PC was also able to partially inhibit TBARS and conjugated diene formation in linoleic acid micelles exposed to hemoglobin, though it did not protect albumin fragmentation from the irradiation of water with an X-ray source.  相似文献   

2.
Rabbit kidneys were clamped and rendered warm ischaemic (WI) in situ for 60 and 120 min. They were then either removed immediately after the ischaemic insult or after reperfusion with blood for 60 min or 24 hr. Homogenates were assayed for phospholipid-Schiff base fluorescence (Ex. 360 nm, Em. 435 nm) and for diene conjugate formation by u.v. spectrophotometry (240 nm) as indices of lipid peroxidation. No alteration in tissue levels of Schiff base was evident immediately after WI but when the homogenates were incubated at 37 degrees C for 90 min, the rate of peroxidation was significantly elevated compared to controls (P less than 0.02 after WI of 60 min and P less than 0.001 after 120 min of WI). These values were still further elevated after reperfusion with blood for 60 min and 24 hr (P less than 0.001). Diene conjugates were raised after WI alone and further still after reperfusion. Thus an early index of lipid peroxidation (diene conjugation) suggested peroxidative damage during the warm ischaemic period itself, whilst detection of Schiff bases was only possible after in vitro incubation of the tissue. Both indices of oxygen-derived free radical damage were increased after reperfusion in vivo with blood and may relate to the degree of tissue damage sustained during ischaemia and reflow.  相似文献   

3.
Grass pea seedling histaminase (a copper-diamine oxidase) was found to exert a significant cardioprotection against post-ischaemic reperfusion damage. Electrocardiogram (ECG) recordings from the rats subjected in vivo to ischaemia and reperfusion showed ventricular tachycardia (VT) and ventricular fibrillations (VF) occurring in 9 out of 12 untreated rats whereas no ventricular arrhythmias were found under histaminase (80U/kg body weight) treatment (n=16 rats). Computer-assisted morphometry of the ischaemic reperfused hearts stained with nitroblue tetrazolium showed the extension of damaged myocardium (area at risk and infarct size) significantly reduced in rats treated with histaminase, in comparison with the non-treated rats, whereas no protection was found with the semicarbazide inactivated histaminase. Biochemical markers of ischaemia-reperfusion myocardial tissue damage: malonyldialdehyde (MDA), tissue calcium concentration, myeloperoxidase (MPO), and apoptosis indicator caspase-3 were significantly elevated in untreated post-ischaemic reperfused rats, but significantly reduced under histaminase protection. In conclusion, plant histaminase appears to protect hearts from ischaemia-reperfusion injury by more than one mechanism, essentially involving histamine oxidation, and possibly as reactive oxygen species scavenger, presenting good perspectives for a novel therapeutic approach in treatment of ischaemic heart pathology.  相似文献   

4.
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.  相似文献   

5.
Oxidative stress is a recognized factor of ischemia reperfusion injury. It shares damage of lipids (LPO) and proteins (PPO), and consequently might cause changes in activity of transport systems. Global 15 min ischemia followed by 2, 24 and 48 hour reperfusion was induced by four-vessel occlusion in Wistar rats of both sexes. Levels of TBARS and conjugated dienes as parameters of LPO were analyzed in forebrain homogenates. Concentrations of total free sulfhydryl (SH) groups and emission spectra of tryptophan were measured to quantify PPO. Our results indicate that lipid peroxidation and protein oxidation occurs mainly during the period of reperfusion. However, significant increase in the level of conjugated dienes can be detected already after 15 min ischemia. Attack of proteins by free radicals leads to modification in structure of proteins seen as a decrease of free SH groups and tryptophan fluorescence. Ischemia/reperfusion induces formation of lipid peroxidation products as well as protein modifications.  相似文献   

6.
Peroxidation was studied in anoxically treated plant tissues and quantified as conjugated dienes/trienes in the total lipid fraction and as the production of thiobarbituric acid reactive substances (TBARS). Oxidative stress caused by re-exposure of plants to oxygen led to an increase of conjugated diene/triene formation in rhizomes of Iris germanica and roots of wheat ( Triticum aestivum L.) and oats ( Avena sativa L.), and after a long anoxic exposure (45 days) in the rhizomes of the very anoxia tolerant Iris pseudacorus . Second derivative (SD) spectrophotometry of the UV spectrum of lipid extracts confirmed the formation of dienes. However, determination of TBARS in Iris spp. showed no lipid peroxidation in the anoxia tolerant I. pseudacorus . In the rhizomes of the anoxia intolerant I. germanica , elevated levels of TBARS correlated positively with conjugated diene/triene formation. The results suggest that anoxic stress may induce qualitative changes in membrane lipids, as indicated by lipid peroxidation after restoration of aerobic conditions. The rate of lipid peroxidation correlated negatively with anoxic stress tolerance.  相似文献   

7.
Lipid Peroxidation In Vivo Induced by Reversible Global Ischemia in Rat Brain   总被引:18,自引:8,他引:10  
It has been hypothesized that ischemia, followed by reperfusion, facilitates peroxidative free-radical chain processes in brain. To resolve this question, rats were subjected to reversible global ischemia. From coronal sections of brains frozen in situ, small (ca. 2 mg) amounts of tissue were sampled from neocortex, hippocampus, and thalamus of both cerebral hemispheres of four groups of rats exposed to 30 min cerebral ischemia followed by 0, 30, 60, and 240 min of reperfusion, and from a control group subjected to the same operative procedures, except for the induction of ischemia. Heptane-solubilized total lipid extracts from these samples were analyzed spectroscopically in the 190-330 nm range for content of isolated (nonconjugated) double bonds and of conjugated diene structures; the latter are formed from isolated double bonds during peroxidation of unsaturated fatty acids. Spectra derived from tissue regions of rats subjected to ischemia, or ischemia followed by reperfusion, were compared to averaged, region-specific control spectra and were normalized to the original content of isolated double bonds in the peroxidized samples. The resultant difference spectra were analyzed in terms of ratios of conjugated diene concentration to the concentration of isolated double bonds originally at risk in the specific tissue zones considered. The peak representing conjugated diene formation was centered at 238 +/- 1 nm and was usually well resolved when the molar ratio [conjugated diene]/[isolated double bonds], expressed as a percentage [( CD]/[IDB]), was greater than 0.25%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rabbit spinal cord, subjected to severe partial ischemia induced by abdominal aorta ligation tightly below the renal arteries, was analyzed for phospholipid composition and levels of lipid peroxidation products after 10, 20, and 40 min of the insult. Under conditions when spinal cord blood flow was decreased below 5% of control, concentrations of inositol and ethanolamine phospholipids were decreased by 30% and 10%, respectively. Phosphatidic acid concentration was also altered during ischemia. No accumulation of thiobarbituric acid reactive substances (TBA-RS), conjugated dienes and fluorescent lipid soluble material was found throughout the ischemic period. Pattern of TBA-RS, conjugated diene, and fluorophore formation during postischemic in vitro incubation without and with a peroxidation couple (Fe2+, ascorbic acid) showed increased susceptibility to postischemic lipid peroxidation in tissues after 20 and 40 min of ischemia.  相似文献   

9.
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered.  相似文献   

10.
The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.  相似文献   

11.
Abstract: The occurrence of peroxidative damage, as distinguished from anaerobic damage, to brain fatty acids and phospholipids was characterized in vitro. Fe2+ and ascorbic acid were used to stimulate peroxidation in cortical homogenates from rat brain incubated with or without oxygen. Lipid peroxidation was established in samples incubated with oxygen by increased diene conjugation, accumulation of thiobarbituric acid-reactive material (TBAR) and of lipid-soluble fluorescent products. No peroxidation occurred in samples incubated in the absence of oxygen (100% N2). Lipid peroxidation was characterized by a selective loss of arachidonic acid and docosahexaenoic acid and by degradation of ethanolamine phosphoglyceride, while choline phosphoglyceride did not change. During the course of peroxidation there were parallel increases in products of lipid peroxidation concomitant with the decrease in polyenoic fatty acids. The maximal changes in diene conjugation and TBAR occurred earlier than the maximal changes in fluorescent material and fatty acids. It is concluded that measurements of changes in brain fatty acid and phospholipid composition may be a useful tool to establishment of whether peroxidative damage is important in vivo in situations with a critically reduced oxygen supply. Estimation of lipid-soluble fluorescence in vivo may also be useful, since it is considered to reflect the accumulation of stable end products of peroxidation.  相似文献   

12.
A new oligomeric derivative was synthesized from prostaglandin B2 and ascorbic acid, and its effect on rat brain ischemia-reperfusion injury was studied. Brain ischemia was produced in the rat by the combination of bilateral common carotid artery occlusion and hemorrhagic hypotension (30 mmHg, 20 min). The cerebral cortex was homogenized in the presence of the spin trap agent, N-tert-butyl-alpha-phenyl-nitrone (PBN). Spin-adducts were detected using an electron spin resonance spectrometer (EPR). Lipid peroxidation was estimated from the amounts of both thiobarbituric acid reactive substances (TBAR) and conjugated diene. In control experiments, reperfusion induced a burst of free radical formation which peaked at 5 min reperfusion time (238 +/- 41%). Lipid peroxidation increased significantly after 20 min of reperfusion (TBAR, 161 +/- 50%; conjugated diene, 160 +/- 29%). When the oligomeric derivative was administered (9 mg/kg i.p. 30 min before ischemic insult), it significantly reduced both spin adduct formation (103 +/- 13%) and lipid peroxidation (TBAR, 109 +/- 14%; conjugated diene, 97 +/- 33%).  相似文献   

13.
Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (≤1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas α-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation.  相似文献   

14.
1. Free radical-dependent lipid peroxidation processes have long been thought to contribute to brain damage following stroke or cerebral ischemia/reperfusion.2. The preponderance of evidence for this belief has been derived indirectly, through diminution of tissue injury indices (e.g., brain infarct volume) facilitated by application of free radical scavenger substances.3. Direct, unequivocal evidence for lipid peroxidation in terms of classical assays (detection of conjugated diene absorbance or thiobarbituric acid-reactive substances) is considerably less common, and its validity can be questioned.4. Correlations of treatment-induced diminishment of brain injury indices with reductions in lipid peroxidation level are rarer still.5. Reasons underlying the disparity between the belief that lipid peroxidation contributes to ischemic brain injury and direct evidence for this contribution (at least acutely) are proposed, along with evidence that new methods are being developed which should provide the basis for obtaining a definitive answer.  相似文献   

15.
In this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO (1 mM) at 37 °C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000. Lipid peroxidation was assessed by thiobarbituric acid-reactive substance (TBARS) production. DXSs and C6S enhanced TBARS production in a dose-dependent manner. The decline in TBARS production at the relatively high C6S concentrations may be attributed to C4S present in C6S, since in contrast to C6S, C4S is known to react with hypochlorite. Dextrans, nonsulfated analogues of DXS, failed to modulate TBARS production. This fact indicates the important role of negatively charged sulfate groups for DXS to facilitate hypochlorite-induced peroxidation of PC liposomes. The electrostatic nature of the mechanism providing for the pro-oxidative effect of DXS was also supported by the influence of liposome surface charge and solution ionic strength on the extent of liposome peroxidation. The addition of calcium ions to the incubation mixture did not prevent the pro-oxidative action of DXS. The relevance of the results to atherogenesis is discussed.  相似文献   

16.
This work was performed to elucidate further the main cellular events underlying the protective effect of ischaemic preconditioning in an in vivo rat liver model of 90 min ischaemia followed by 30 min reperfusion. A significant attenuation of the various aspects of post-ischaemic injury, namely necrosis and the levels of hydrogen peroxide and 5- and 15-hydroperoxyeicosatetraenoic acids, was afforded by the prior application of a short cycle of ischaemia/reperfusion (10 + 10 min) or when rats were previously treated with gadolinium chloride. However, when preconditioning was applied on Kupffer cell-depleted livers, no additional level of ischaemic tolerance was obtained. In terms of cellular pathology, this result could be suggestive of Kupffer cells as the target of the preconditioning phenomenon during the warm ischaemia/reperfusion injury. Accordingly, modulation of Kupffer cell activity was associated with a well-preserved hepatocyte integrity, together with low levels of pro-oxidant generation during reperfusion. As activated Kupffer cells can generate and release potentially toxic substances, their modulation by ischaemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.  相似文献   

17.
Oxidant stress is one of the factors proposed to be responsible for damaged erythrocytes observed during and after exercise. The impact of exertional oxidant stress after acute exhaustive treadmill running on erythrocyte damage was investigated in sedentary (Sed) and exercise-trained (ET) rats treated with or without antioxidant vitamins C and E. Exhaustive exercise led to statistically significant increments in the levels of thiobarbituric acid-reactive substance (TBARS) and H2O2-induced TBARS in Sed rats and resulted in functional and structural alterations in erythrocytes (plasma hemoglobin concentrations, methemoglobin levels, and rise in osmotic fragility of erythrocytes with decrease in erythrocyte deformability). Administration of antioxidant vitamin for 1 mo before exhaustive exercises prevented lipid peroxidation (TBARS, H2O2-induced TBARS) in Sed rats without any functional or structural alterations in erythrocytes. Parameters indicating erythrocyte lipid peroxidation and deterioration after exhaustive exercise in rats trained regularly with treadmill running for 1 mo were not different from those in Sed controls. Erythrocyte lipid peroxidation (TBARS) increased in exhausted-ET rats compared with ET controls; however, the plasma hemoglobin, methemoglobin levels, and erythrocyte osmotic fragility and deformability did not differ. Exhaustive exercise-induced lipid peroxidation in ET rats on antioxidant vitamin treatment was prevented, whereas functional and structural parameters of erythrocytes were not different from those of the ET controls. We conclude that exertional oxidant stress contributed to erythrocyte deterioration due to exercise in Sed but not in ET rats.  相似文献   

18.
Lead (100 ppm) was given in doubly deionised water for 30 days to one group of rats. The other groups received lead along with exogenous antioxidants like vitamin E (50 IU/kg), vitamin C (800 mg/kg) or Spirulina (1500 mg/kg) in food for a similar period. Levels of lipid peroxidation products such as malondialdehyde, conjugated diene and hydroperoxide were measured in liver, lung and kidney of treated rats. In lead treated animals there was a significant increase in the levels of these lipid peroxidative products. Administration of exogenous antioxidants in the lead treated animals reduced the levels of malondialdehyde, conjugated diene and hydroperoxide. It indicated that vitamin E, vitamin C and Spirulina had significant (P < 0.001) antioxidant activity thereby protecting the animals from lead induced toxicity.  相似文献   

19.
Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS)/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI) was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA), advanced oxidation products (AOPP), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.  相似文献   

20.
The aim of this study was to investigate effect of dietary omega-3 fatty acid supplementation on the indices of in vivo lipid peroxidation and oxidant/antioxidant status of plasma in rats. The plasma thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels, and activities of xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were studied in male Wistar Albino rats after ingestion of 0.4 g/kg fish oil (rich in omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid) for 30 days and compared to untreated control rats. The rats in the treated group had significantly higher SOD activity (P < 0.001), NO levels (P < 0.01) and decreased TBARS levels (P < 0.05) with respect to controls whereas GSH-Px and XO activities were not significantly different between the groups. None of the measured parameters had significant correlation with each other in both groups. We conclude that dietary supplementation of omega-3 fatty acids may enhance resistance to free radical attack and reduce lipid peroxidation. These results support the notion that omega-3 fatty acids may be effective dietary supplements in the management of various diseases in which oxidant/antioxidant defence mechanisms are decelerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号