首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Concentrations of Cd, Pb and Cu in the roots, stems and leaves of bulgarian bush beans (Phaseolus vulgaris L.) were determined for plants grown in various soils of increasing levels of contamination of these metals. Most of each heavy metal absorbed by plants was retained in roots. Concentrations of Cd, Pb and Cu in roots increased in response to soil concentrations, whereas, in stems, only Cd and Pb concentrations increased and Cu concentration was relatively constant. It is thought that Cu transport to the stele was metabolically controlled, whereas Cd and Pb reached the stem by leakage across non suberised areas of the endodermis. Uptake of heavy metals was associated with a decrease in zinc content in plants and a decrease in yield. By regression analysis decrease in both zinc content and plant yield could be best related to Cd content in stems. Possible reasons for these effects are discussed.  相似文献   

2.
Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria. The bacteria were tested for heavy metals (Cr, Zn, Cu, Ni, Pb and Co) resistance, Cr(VI) reduction and PGPB characters (phosphate solubilization, production of IAA and siderophores). The results showed that the bacterial isolates resist to heavy metals and reduce Cr(VI), with varying capabilities. 37.14% of the isolates have the capacity of solubilizing phosphate, 28.57% are able to produce siderophores and all isolates have the ability to produce IAA. Isolate NF2 that showed high heavy metal resistance and plant growth promotion characteristics was identified by 16S rDNA sequence analysis as a strain of Cellulosimicrobium sp.. Pot culture experiments conducted under greenhouse conditions showed that this strain was able to promote plant growth of alfalfa in control and in heavy metals (Cr, Zn and Cu) spiked soils and increased metal uptake by the plants. Thus, the potential of Cellulosimicrobium sp. for both bioremediation and plant growth promotion has significance in the management of environmental pollution.  相似文献   

3.
Summary Experiments on sitka-spruce seedlings grown in acidic peaty gley soils under green-house conditions, where the soils where doped with increasing amounts of Cd, Cu and Pb up to maximum levels of metal added of 16 ppm, 32 ppm and 400 ppm respectively, showed that the levels of Cd and Pb in shoots and roots increased with increasing levels in the soil, whereas levels of copper appeared to be independent. The addition of these three metals to the soils did not influence the uptake of other heavy metals, or of the nutrients potassium or calcium. Increases in the shoot cadmium levels significantly reduced the yields of the plant shoots. However, the plant yields were only affected by the highest level of lead that was added to the soil (400 ppm Pb) and unaffected by all the copper treatments (0–32 ppm Cu in the soil). The lengths of the sitka-spruce roots were reduced when cadmium and lead levels in the soil exceeded certain threshold concentrations (2.5 ppm total Cd, where 0.3 ppm was extractable with 0.5 M acetic acid; and 48 ppm total Pb, where 1.7 ppm was extractable). However, root lengths were not reduced by copper. This was probably related to the fact that copper appears to be relatively unavailable in the type of soil used, as only 1.1. ppm Cu was extractable from a total of 32 ppm Cu added. Root branching was apparently reduced by increases in the soil levels of cadmium, copper and lead. The roots of some control plants had symbiotic mycorrhizal associations (4 out of 19 plants), whereas the roots of all the plants grown in the soils with added heavy metals did not develop these.  相似文献   

4.
Plants play a key role in the accumulation of metals in contaminated environment. Ephemeral plants, such as cyperus vaginatus, from the family Cyperaceae have been used in constructed wetlands to alter the biogeochemistry of waterlogged soils. High elemental content in wetlands often induces chemical changes in the root, stem and leaf of wetland plants. Elemental uptake and possible chemical changes in the roots of Cyperus vaginatus was investigated and compared with plants grown away from the wetland. Among the 9 heavy metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) and metalloid (As) measured, with the exception of Mn, all metals had higher content in the plant roots grown within the wetland. This was followed by plants grown near to the wetland that receive stormwater occasionally and then plants grown far from the wetland. The 3-D fluorescence spectra record showed notable differences in the chemical composition of roots grown in the three locations. The spectra combined with parallel factor analysis showed three dominant fluorescence components. Comparison of the fluorescence signatures showed a continuum of spectral properties constrained by the degree of metal contamination.  相似文献   

5.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

6.
We used Pisolithus tinctorius and Cenococcum geophilum to determine the copper (Cu) resistance of ectomycorrhizal (ECM) fungi and their potential for improving phytoremediation of Cu-contaminated soil by Chinese red pine (Pinus tabulaeformis). The results showed that nutrient accumulation in C. geophilum mycelium was significantly lower under higher Cu concentrations in the soil, which was not observed in P. tinctorius. Meanwhile, P. tinctorius exhibited greater Cu tolerance than C. geophilum. Inoculation with ECM fungi significantly improved the growth of pine shoots planted in polluted soil in pot experiments (p < 0.01). The total accumulated Cu in pine seedlings planted in Cu-contaminated soil increased by 72.8% and 113.3% when inoculated with P. tinctorius and C. geophilum, respectively, indicating that ECM fungi may help their host to phytoextract heavy metals. Furthermore, the majority of the total absorbed metals remained in the roots, confirming the ability of ECM fungi to promote heavy metal phytostabilization. There were no differences between the effects of the two fungi in helping the host stabilize and absorb Cu, even though they have different Cu tolerances. Inoculation with ECM fungi can benefit plant establishment in polluted environments and assist plants with phytoremediating heavy-metal-contaminated soils.  相似文献   

7.
Constructed tide tanks were used to examine the accumulation and distribution of heavy metals in various components of a simulated mangrove ecosystem. Young Kandelia candel plants grown in mangrove soils were irrigated with wastewater of various strengths twice a week for a period of one year. The amounts of heavy metals released via tidal water and leaf litter were monitored at regular time intervals. The quantities of heavy metals retained in mangrove soil and various plant parts were also determined. Results show that most heavy metals from wastewater were retained in soils with little being uptake by plants or released into tidal seawater. However, the amounts of metals retained in plants on a per unit dry weight base were higher than those in soils as the biomass production from the young mangrove plants was much smaller when compared to the vast quantity of soils used in this study. A significantly higher heavy metal content was found in roots than in the aerial parts of the mangrove plant,indicating that the roots act as a barrier for metal translocation and protect the sensitive parts of the plant from metal contamination. In both soil and plant, concentrations of Zn, Cd, Pb and Ni increased with the strengths of wastewater, although the bioaccumulation factors for these metals decreased when wastewater strengths increased. These results suggest that the mangrove soil component has a large capacity to retain heavy metals, and the role of mangrove plants in retaining metals will depend on plant age and their biomass production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征   总被引:17,自引:0,他引:17  
黄小娟  江长胜  郝庆菊 《生态学报》2014,34(15):4201-4211
对重庆溶溪锰矿尾渣堆积区土壤、优势植物以及周边农田土壤的重金属含量(Mn、Cd、Cu、Zn和Pb)进行测定分析,并以重庆市土壤背景值为评价标准,应用Hakanson潜在生态危害指数法对土壤中重金属的潜在生态危害进行了评价。结果表明:该锰矿尾渣堆积区土壤中Mn、Cd、Cu、Zn和Pb的平均含量分别为48382.5、3.91、79.97、131.23和80.68 mg/kg,受到Mn、Cd的严重污染,Mn为强或很强生态危害,Cd为极强生态危害,而Cu、Zn、Pb为轻微生态危害,各尾矿渣堆积区的综合潜在生态危害指数(RI)均远大于720,为极强生态危害。对优势植物重金属含量的分析显示,绝大部分植物地上部Mn、Cd含量都超出正常范围的上限值,而Cu、Zn和Pb含量基本都在正常范围内;根据植物对重金属的吸收特征,将植物分为三类:将重金属主要累积于地上部分的富集型,如垂序商陆(Phytolacca americana L.)和酸模叶蓼(Polygonum lapathifolium Linn.),适用于重金属复合污染土壤的植物修复;将重金属主要累积于根部的根部囤积型,如芒(Miscanthus sinensis Anderss.)和乌蕨(Stenoloma chusanum Ching);重金属含量较低的规避型,如黄花蒿(Artemisia annua L.)、长波叶山蚂蝗(Desmodium sequax Wall.)及钻形紫苑(Aster subulatus Michx.);后两种类型的植物可种植在重金属污染严重且使用价值相对较低的矿山废弃地上,同时规避型植物对于研究植物的重金属排斥机理具有重要价值。溶溪锰矿区周边农田土壤主要受到Cd的严重污染,Cd为很强或极强生态危害。  相似文献   

9.
Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.  相似文献   

10.
The aim of this work was to test Lupinus luteus plants, inoculated with metal resistant rhizobacteria, in order to phytostabilise metals in contaminated soils. The resistance to heavy metals of strains isolated from nodules of Lupinus plants was evaluated. The strain MSMC541 showed multi-resistance to several metals (up to 13.3 mM As, 2.2 mM Cd, 2.3 mM Cu, 9 mM Pb and 30 mM Zn), and it was selected for further characterization. Furthermore, this strain was able to biosorb great amounts of metals in cell biomass. 16S rDNA sequencing positioned this strain within the genus Serratia. The presence of arsenic resistance genes was confirmed by southern blot and PCR amplification. A rhizoremediation pot experiment was conducted using Lupinus luteus grown on sand supplemented with heavy metals and inoculated with MSMC541. Plant growth parameters and metal accumulation were determined in inoculated vs. non-inoculated Lupinus luteus plants. The results showed that inoculation with MSMC541 improved the plant tolerance to metals. At the same time, metal translocation to the shoot was significantly reduced upon inoculation. These results suggest that Lupinus luteus plants, inoculated with the metal resistant strain Serratia sp. MSMC541, have a great potential for phytostabilization of metal contaminated soils.  相似文献   

11.
农作物体内铅,镉,铜的化学形态研究   总被引:75,自引:8,他引:67  
本文报道了农作物体内重金属存在的化学形态。用逐步提取法分析了生长在污染土壤上的水稻、小麦的根与叶。结果表明,在两种作物中,根部的铅以活性较低的醋酸可提取态与盐酸可提取态占优势,而叶中的铅以盐酸可提取态占优势。不论根部或叶部,在各种形态镉中,以氯化钠可提取镉所占比例较高,作用较重要。作物体内的铜活性较强,根部以乙醇可提取态占优势,叶中以水提取态占优势。各种结合形态的重金属迁移能力、毒性效应有显著差异。作物体内重金属化学形态特征与其表观毒性效应有密切联系。  相似文献   

12.
Remediation of storm-water polluted with heavy metals should be possible in percolation systems, ponds, or wetlands. The aim of this work was to find plant species for such systems that are efficient in the uptake of Zn, Cu, Cd, and Pb. Plants were collected from percolation and wetland areas and analyzed for heavy metal concentrations. Results showed that submersed and free-floating plants had the capacity to take up high levels of Cu, Zn, and Pb into their shoots. With roots having a concentration factor above 1, the terrestrial plants show efficient stabilization of Cd and Zn and emergent plants show corresponding stabilisation of Zn. In addition, Potamogeton natans, Alisma plantago-aquatica, and Filipendula ulmaria were used in a controlled experiment. The shoots of P. natans and the roots of A. plantago-aquatica were found to accumulate even higher concentrations of Zn, Cu, and Pb than found in the field-harvested plants. Similar results were found for Cd in shoots and Pb in roots of F. ulmaria. Our conclusion is that submersed plant species seem to be the most efficient for removal of heavy metals from storm-water.  相似文献   

13.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

14.
Meerts  Pierre  Van Isacker  Nathalie 《Plant Ecology》1997,133(2):221-231
In continental Europe, the heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy-metal polluted soils (subsp. calaminare) and on soils with normal heavy metal content (subsp. caerulescens). In order to assess the extent and partitioning of variation in heavy metal tolerance and foliar mineral composition, twelve families from two populations of each subspecies were grown in pots in four soil treatments differing in heavy metal (Zn, Pb) and macronutrient concentrations. The two subspecies differed systematically in many respects. Subsp. calaminare had a higher survival at high levels of heavy metals and a higher tolerance index in all treatments. It also had three times lower foliar zinc and lead concentrations when grown at moderate levels of heavy metals. This, together with a negative correlation of foliar Pb concentration with growth in subsp. caerulescens, suggests that heavy metal accumulation per se is not a mechanism of tolerance in this species. Variation among families within populations accounted for a larger proportion of total variance in growth and mineral composition than variation between populations. Additionally, within population variation in heavy metal tolerance and accumulation was significantly lower in subsp. calaminare. This suggests that, adding to a background constitutive tolerance at the species level, natural selection has increased heavy metal tolerance in metallicolous populations of Thlaspi caerulescens.  相似文献   

15.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   

16.
按离路基不同距离采集土壤、麦苗和籽粒样品, 在测定样品重金属 (Pb、Cd、Zn、Cr和Cu) 的基础上, 开展了路旁土壤-小麦系统重金属分布、积累和污染状况分析, 并对膳食小麦 (Triticumaestivum) 引起的健康风险进行了评价。结果表明:1) 土壤-小麦系统重金属含量随着离开路基距离的增加呈先增加后减少的趋势, 土壤重金属含量>麦苗重金属含量>籽粒重金属含量。2) 麦苗和小麦籽粒对土壤重金属富集能力的大小顺序均为Cu>Cd>Zn>Pb>Cr, 麦苗对重金属的富集能力大于小麦籽粒。3) 膳食小麦所致的Cd个人健康风险较大。  相似文献   

17.
165 plants and 40 soil samples were collected at seven areas in Tianjin. The analysis of sulphur and heavy metals in these samples showed the polluted degree of the air. It is indicated that the plants at smeltery (polluted industry area) contain Zn, Cu, Cd, Pb highest and NJ, S higher. The content of heavy metals in these plants were 3 to 11 times higher than that of the background value. In business-traffic area and park, the amount of Zn, Cu, Ni, Cd in the plants were 1.5 to 3.5 times higher than the background value. In the other area, such as culture-education area, road and suburbs, the pollution is not significant, and in the clean area (Panshan), all elements in the plants are the lowest. As to the soils in polluted industry area (Smeltery), the amount of Ph, Cu, Cd, Zn and S was 725, 348, 9, 3 and 14 times higher than that of the background value respectively. Among them, most of Pb, Cu were deposited in surface layer. In soil of business-traffic area, Pb, Cu, Cd, Zn and S were 2 to 10 times higher than the background value, and in the soil of clean area, all elements are also the lowest. The stomata of plants which were blocked by the particles going down from the air resulted in increase in the stamotal diffusive resistance and the order of the resistance in the different places are as follows: polluted industry areas > parks > business-traffic areas > road > clean areas. These results are in agreement with the polluted state of the plants and soils in above mentioned areas.  相似文献   

18.
An experiment was performed to determine the effects of mine tailings alone mixed with compost or with compost plus crude biosurfactant on the accumulation of heavy metals (Pb, Zn, Cu, Cr, Cd, and Ni) in Acacia retinodes, Nicotiana glauca, and Echinochloa polystachya. The plants were grown in soil, mine tailings, and mine tailings containing compost over a period of seven and five months for shrubs or grass, respectively. The plants Acacia retinodes and Nicotiana glauca grown in mine tailings containing compost showed increases in dry biomass (from 62 to 79%) compared with plants in only tailings. Heavy metals accumulated in the roots and leaves showed high translocation rates of Cr in N. glauca, Cd in A. retinodes, and Ni in E. polystachya. Concentrations of heavy metals in the three plants irrigated with crude biosurfactant were not significantly different from those irrigated with water. Zn and Cd fractions within mine tailings containing compost were bound to carbonate, Pb was bound to residues, and Cu was bound to Fe-oxides. Cd had the highest mobility factor followed in order by Zn, Pb, and Cu. The elevated concentrations of Pb in roots and the low translocation rate for N. glauca and A. retinodes indicate that they are suitable for phytostabilizing Pb and Zn.  相似文献   

19.
金属矿区芒草种群对重金属的积累及其与土壤特性的关系   总被引:9,自引:0,他引:9  
通过分析大型综合金属矿区中经历不同污染强度与污染时间胁迫的芒草(Miscanthus sinensis)种群对4种主要重金属的积累状况,初步揭示芒草对这些重金属的积累特性与土壤重金属含量的关系。结果表明,1芒草根茎叶对4种重金属的的积累顺序为:根〉叶〉茎;2芒草对Cd、Pb的积累量与土壤中这两种重金属含量之间存在显著(P〈0.05)正相关关系;对Cu、Zn的积累量与土壤含量之间无显著相关,主要是因为土壤最高Cu与Zn含量已超过芒草对这两种元素积累所需的最大量,成为对芒草构成胁迫的主要因子。在该矿区的酸性条件下,芒草对Pb、Zn、Cu3种重金属的吸收率随pH值升高而升高,pH接近的样地,芒草的吸收率主要受土壤重金属含量的影响。结合各种群对四种重金属的积累状况判断,强度胁迫下的种群可能已发生耐性分化,从而产生较其它种群更强的耐重金属特性。总体上芒草是一种多重金属耐性植物,对这四种重金属的耐性顺序是:Cd〈Cu〈Zn-Pb。  相似文献   

20.
The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号