首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth responses of a grass,Poa pratensis, to elevated CO2 and nitrogen were investigated. Light-saturated photosynthetic rate per unit leaf area increased with exposure to elevated CO2, while dry weight did not respond to increased CO2. Patterns of biomass allocation within plants, including leaf area, leaf area ratio, specific leaf area, and root to shoot ratios, were not altered by elevated CO2, but changed considerably with N treatment Shoot and whole-plant tissue N concentrations were significantly diluted by elevated CO2 (Tukey test, P < 0.05). Total N content did not differ significantly among CO2 treatments. The absence of a concomitant increase in N uptake under elevated CO2 may have caused a dilution in plant tissue [N], probably negating the positive effects of increased photosynthesis on biomass accumulation.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

3.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

4.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

5.
We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor, Suillus bovinus, S. luteus, Piloderma croceum, Paxillus involutus, Boletus badius, or non-mycorrhizal, under ambient, and elevated CO2 (350 or 700 μl l−1 CO2); each treatment contained six replicates. The trial lasted 156 days. During the final 28 days, the seedlings were labeled with 14CO2. We measured hyphal length, plant biomass, 14C allocation, and plant nitrogen and phosphorus concentration. Almost all parameters were significantly affected by fungal species and/or CO2. There were very few significant interactions. Elevated CO2 decreased shoot-to-root ratio, most strongly so in species with the largest extraradical mycelium. Under elevated CO2, ECM root growth increased significantly more than hyphal growth. Extraradical hyphal length was significantly negatively correlated with shoot biomass, shoot N content, and total plant N uptake. Root dry weight was significantly negatively correlated with root N and P concentration. Fungal sink strength for N strongly affected plant growth through N immobilization. Mycorrhizal fungal-induced progressive nitrogen limitation (PNL) has the potential to generate negative feedback with plant growth under elevated CO2. Responsible Editor: Herbert Johannes Kronzucker  相似文献   

6.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

7.
Accumulation of heavy metals (HMs) in cultivated soils is a continuing environmental problem in many parts of the world. An increase in HM concentration can enhance uptake of toxic metals by crops and enter the human food chain. In this study, the uptake behavior of wheat and safflower was evaluated in a calcareous soil by using 12 undisturbed columns in which half were artificially contaminated. Heavy metals in the form of CdCl2 (15 mg Cd kg? 1), CuSO4 (585 mg Cu kg? 1), Pb(NO3)2 (117 mg Pb kg? 1), and ZnCl2 (1094 mg Zn kg? 1) were sprayed on the soil surface and completely mixed in the top 10 cm. The background total concentrations of Cd, Cu, Pb and Zn were 1.6, 29.5, 17.5 and 61.2 mg kg? 1, respectively. After metal application, half of the columns (3 contaminated and 3 uncontaminated) were sown with wheat (Triticum aestivum) and the other half with safflower (Carthamus tinctorious) and grown for 74 days until maturity. After harvesting, soil columns were cut into 10-cm sections and analyzed for HNO3- and DTPA-extractable metal concentrations. Metal concentrations were also measured in different plant tissues. The results showed that artificial contamination of topsoil decreased the transpiration rate of wheat by 12% and that of safflower by 6%. In contaminated columns, Cd, Cu, Pb, and Zn accumulation in wheat shoot was greater by 8.0-, 1.9-, 3.0-, and 2.1-fold than the control, respectively. Accordingly, these numbers were 46.0-, 1.3-, 1.7-, and 1.6-fold in safflower shoot. Soil contamination with HMs resulted in a 55% decrease in shoot dry matter yield of wheat while it had no significant effect on shoot dry matter of safflower. The normalized water consumption for safflower was therefore not affected by metal contamination (≈ 13 mm H2O g? 1 of dry weight for all safflower and uncontaminated wheat treatments), while contaminated wheat was much less water efficient at about 27 mm H2O g? 1 dry weight. It was concluded that although artificial contamination had a negative effect on wheat growth, it did not affect safflower's normal growth and water efficiency.  相似文献   

8.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

9.
Sustained increases in plant production in elevated CO2 depend on adequate belowground resources. Mechanisms for acquiring additional soil resources include increased root allocation and changes in root morphology or physiology. CO2 research to date has focused almost exclusively on changes in biomass and allocation. We examined physiological changes in nitrate and ammonium uptake in elevated CO2, hypothesizing that uptake rates would increase with the amount of available CO2. We combined our physiological estimates of nitrogen uptake with measurements of root biomass to assess whole root-system rates of nitrogen uptake. Surprisingly, physiological rates of ammonium uptake were unchanged with CO2, and rates of nitrate uptake actually decreased significantly (P<0.005). Root boomass increased 23% in elevated CO2 (P<0.005), but almost all of this increase came in fertilized replicates. Rates of root-system nitrogen uptake in elevated CO2 increased for ammonium in nutrient-rich soil (P<0.05) and were unchanged for nitrate (P>0.80). Root-system rates of nitrogen uptake were more strongly correlated with physiological uptake rates than with root biomass in unamended soil, but the reverse was true in fertilized replicates. We discuss nitrogen uptake and changes in root biomass in the context of root nutrient concentrations (which were generally unchanged with CO2) and standing pools of belowground plant nitrogen. In research to date, there appears to be a fairly general increase in root biomass with elevated CO2, and little evidence of up-regulation in root physiology.  相似文献   

10.
This study investigates the modulation of antioxidant defence system of Typha angustifolia after 30 days exposure of 1 mM chromium (Cr), cadmium (Cd), or lead (Pb). T. angustifolia showed high tolerance to heavy metal toxicity with no visual toxic symptom when exposed to metal stress, and Cd/Pb addition also increased plant height and biomass especially in Pb treatment. Along with increased Cr, Cd, and Pb uptake in metal treatments, there was enhanced uptake of plant nutrients including Ca and Fe, and Zn in Pb treatment. A significant increase in malondialdehyde (MDA) content and superoxide dismutase (SOD) and peroxidase (POD) activities were recorded in plants subjected to Cr, Cd, or Pb stress. Furthermore, Pb stress also improved catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities; whereas Cr stress depressed APX and GPX. The results indicate that enzymatic antioxidants and Ca/Fe uptake were important for heavy metal detoxification in T. angustifolia, stimulated antioxidative enzymes, and Ca, Fe, and Zn uptake could partially explain its hyper-Pb tolerance.  相似文献   

11.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

12.
Human activities have resulted in increased nitrogen deposition and atmospheric CO2 concentrations in the biosphere, potentially causing significant changes in many ecological processes. In addition to these ongoing perturbations of the abiotic environment, human-induced losses of biodiversity are also of major concern and may interact in important ways with biogeochemical perturbations to affect ecosystem structure and function. We have evaluated the effects of these perturbations on plant biomass stoichiometric composition (C:N:P ratios) within the framework of the BioCON experimental setup (biodiversity, CO2, N) conducted at the Cedar Creek Natural History Area, Minnesota. Here we present data for five plant species: Solidago rigida, Achillea millefolium, Amorpha canescens, Lespedeza capitata, and Lupinus perennis. We found significantly higher C:N and C:P ratios under elevated CO2 treatments, but species responded idiosyncratically to the treatment. Nitrogen addition decreased C:N ratios, but this response was greater in the ambient CO2 treatments than under elevated CO2. Higher plant species diversity generally lowered both C:N and C:P ratios. Importantly, increased diversity also led to a more modest increase in the C:N ratio with elevated CO2 levels. In addition, legumes exhibited lower C:N and higher C:P and N:P ratios than non-legumes, highlighting the effect of physiological characteristics defining plant functional types. These data suggest that atmospheric CO2 levels, N availability, and plant species diversity interact to affect both aboveground and belowground processes by altering plant elemental composition.  相似文献   

13.
The effect of elevated atmospheric CO2 concentration on the growth of shoots, roots, mycorrhizas and extraradical mycorrhizal mycelia of pine (Pinus silvestris L.) was examined. Two and a half-month-old seedlings were inoculated axenically with the mycorrhizal fungus Pisolithus tincto-rius (Pers.) by a method allowing rapid mycorrhiza formation in Petri dishes. The plants were then cultivated for 3 months in growth chambers with daily concentrations of 350 and 600 μmol mol?1 CO2 during the day. Whereas plants harvested after 1 and 2 months did not differ appreciably between ambient and increased CO2 concentrations, after 3 months they developed a considerably higher root biomass (%57%) at elevated CO2, but did not increase significantly in root length. The mycorrhizal fungus Pisolithus tinctorius, which depended entirely on the plant assimilates in the model system, grew much faster at increased CO2: 3 times more mycorrhizal root clusters were formed and the extraradical mycelium produced had twice the biomass at elevated as at ambient CO2. No difference in shoot biomass was found between the two treatments after 91 d. However, since the total water consumption of seedlings was similar in the two treatments, the water use efficiency was appreciably higher for the seedlings at increased CO2 because of the higher below-ground biomass.  相似文献   

14.
van de Staaij  J. W. M.  Lenssen  G. M.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,104(1):433-439
Elymus athericus (Link) Kerguélen, a C3 grass, was grown in a greenhouse experiment to determine the effect of enhanced atmospheric CO2 and elevated UV-B radiation levels on plant growth. Plants were subjected to the following treatments; a) ambient CO2-control UV-B, b) ambient CO2-elevated UV-B, c) double CO2-control UV-B, d) double CO2-elevated UV-B. Elevated CO2 concentrations stimulated plant growth, biomass production was 67% higher than at ambient CO2. Elevated UV-B radiation had a negative effect on growth, biomass production was depressed by 31%. Enhanced CO2 combined with elevated UV-B levels caused a biomass depression of 8% when compared with the control plants. UV-B induced growth depression can be modified by a growth stimulus caused by high CO2 concentrations. Growth analysis has been performed and possible physiological mechanisms behind changing growth parameters are discussed.  相似文献   

15.
Enhanced soil respiration in response to elevated atmospheric CO2 has been demonstrated, and ectomycorrhizal (ECM) fungi are of particular interest since they partition host-derived photoassimilates belowground. Although a strong response of ECM fungi to elevated CO2 has been shown, little is still known about the functional diversity among species. We studied carbon (C) partitioning in mycorrhizal Scots pine seedlings in response to short-term CO2 enrichment, using seven ECM species with different ecological strategies. Mycorrhizal associations were synthesised and seedlings grown in large Petri dishes containing peat:vermiculite and nutrient solution for 10–15 weeks, after which half of the microcosms were exposed to elevated CO2 treatment (710 ppm) for 15 days and the other half were kept in ambient CO2 treatment. Partitioning of C was quantified by pulse labelling the seedlings with 14CO2 and examining the distribution of labelled assimilates in shoot, root and extraradical mycelial compartments by destructive harvest and liquid scintillation counting. Fungal biomass was determined with PLFA analysis. The respiratory loss of 14CO2 was on average greater in the elevated CO2 treatment for most species compared to the ambient CO2 treatment. More label was retrieved in the shoots in the ambient CO2 treatment compared to elevated CO2 (significant for P. involutus and P. fallax). Greater amounts of label were found in the extraradical mycelial compartment in all species (except P. involutus) in elevated CO2 compared to ambient CO2 (significant for L. bicolor, P. byssinum, P. fallax and R. roseolus). Fungal biomass production increased significantly with elevated CO2 for two species (H. velutipes and A. muscaria); three species (P. fallax, P. involutus and R. roseolus) showed a similar but non-significant trend, whereas L. bicolor and P. byssinum produced less biomass in elevated CO2 compared to ambient CO2. When 14C in the mycelial compartment and respiration was expressed per unit fungal PLFA the difference between CO2 treatments disappeared. We demonstrated that different ECM fungal isolates respond differently in C partitioning in response to CO2 enrichment. These results suggest that under certain growth conditions, when nutrients are not limiting, ECM fungi respond rapidly to increasing C-availability through changed biomass production and respiration.  相似文献   

16.
Low efficiency is a key problem confronting the development and application of phytoremediation technology. Based on political pressure to reduce CO2 emissions in China and the fact that CO2 is necessary for plant photosynthesis, the effects of captured CO2 fertilization on phytoremediation of soil di-(2-ethylhexyl) phthalate (DEHP) pollution by C3 plant (mung bean, Vigna radiata L.) and C4 plant (maize, Zea mays L.) were investigated. Results showed that DEHP pollution negatively affected the growth and rhizosphere environments of both plants. After CO2 fertilization, both plants had more biomass (aboveground, belowground, and total dry weight), higher alkaline phosphatase activity, and more microbes with DEHP tolerance in their rhizospheres. Superoxide dismutase activity in leaves of both plants decreased significantly. Microbial community composition in both rhizospheres changed. CO2 fertilization also increased plant uptake of DEHP, particularly in the roots, and decreased residual DEHP concentrations in the rhizospheres. These effects were more evident in the C3 than in the C4 plant. This study indicated that CO2 fertilization can enhance the phytoremediation process of polluted soil through promoting plant growth, improving the rhizosphere environment, and increasing plant uptake of DEHP, particular in a C3 plant. CO2 fertilization could be considered as a measure to enhance phytoremediation.  相似文献   

17.
To assess the influence of bacteria inoculation on carbon flow through maize plant and rhizosphere,14C allocation after14CO2 application to shoots over a 5-day period was determined. Plants were grown on C- and N-free quartz sand in two-compartment pots, separating root and shoot space. While one treatment remained uninoculated, treatments two and three were inoculated withPantoea agglomerans (D5/23) andPseudomonas fluorescens (Ps I A12), respectively, five days after planting. Bacterial inoculation had profound impacts on carbon distribution within the system. Root/rhizosphere respiration was increased and more carbon was allocated to roots of plants being inoculated. After five days of14CO2 application, more ethanol-soluble substances were found in roots of inoculated treatments and lower rhizodeposition indicated intensive C turnover in the rhizosphere. In both inoculated treatments the intensity of photosynthesis measured as net-CO2-assimilation rates were increased when compared to the uninoculated plants. However, high C turnover in the rhizosphere reduced shoot growth of D5/23 inoculated plants, with no effect on shoot growth of Ps I A12 inoculated plants. A separation of labeled compounds in roots and rhizodeposition revealed that neutral substances (sugars) constituted the largest fraction. The relative fractions of sugars, amino acids and organic acids in roots and rhizodeposition suggest that amino acid exudation was particularly stimulated by bacterial inoculation and that turnover of this substance group is high in the rhizosphere.  相似文献   

18.
Abstract. In order to explore whether seed size affects plant response to elevated CO2, plants grown from red oak (Quercus rubra L.) acorns were studied for differences in their first year response to CO2 concentrations of 350 and 700 μl/l. Overall, at final harvest, total biomass of plants grown in elevated CO2 were 47 % larger than that of plants grown in ambient CO2. There were significant interactions between CO2 treatments and initial acorn mass for total biomass, as well as for root, leaf, and stem biomass. Although total biomass increased with increasing initial acorn mass for both high and ambient CO2 plants, high CO2 plants exhibited a greater increase than ambient CO2 plants, as indicated by a steeper slope in high CO2 plants. However, CO2 levels did not affect biomass partitioning traits, such as root/shoot ratio, leaf, stem, and root weight ratios, and leaf area ratio. These results suggest that variation in seed size or initial plant size can cause intraspecific variation in response to elevated CO2.  相似文献   

19.
We conducted an experiment on responses of weedy species from an orchard ecosystem to elevated CO2 (700–800 μmol mol−1) under low phosphorus (P) soil in an environment-controlled growth chamber. Twelve local weedy species, Poa annua L., Lolium perenne L., Avena fatua L., Vicia cracca L., Medicago lupulina L., Kummerowia striata (Thunb.) Schindl., Veronica didyma Ten., Plantago virginica L., Gnaphalium affine D.Don., Echinochloa crusgalli var. mitis (L.) Beauv., Eleusine indica (L.) Gaertn. and Setaria glauca (L.) P. Beauv., grouped into four functional groups (C3 grass, C3 forb, legume and C4 grass), were used in the experiment. The total plant biomass, P uptake, and mycorrhizal colonization were measured. The results showed that the total biomass of the 12 weedy species tended to increase under elevated CO2. But changes in the total biomass under elevated CO2 significantly differed among functional groups: legumes showed the greatest increase in the total biomass of all functional groups, following the order C3 forbs > C4 grasses > C3 grasses. Elevated CO2 significantly increased mycorrhizal colonization and P uptake of legumes, C3 forbs and C4 grasses but did not change C3 grasses. Positive correlations between mycorrhizal colonization and shoot P concentration, and between total P uptake and total biomass were found under elevated CO2. The results suggested that the interspecific difference in CO2 response at low P availability was caused by the difference in CO2 response in mycorrhizae and P uptake. These differences among species imply that plant interaction in orchard ecosystems may change under future CO2 enrichment.  相似文献   

20.
The effects of CO2 enrichment and soil nutrient status on tissue quality were investigated and related to the potential effect on growth and decomposition. Two California annuals, Avena fatua and Plantago erecta, were grown at ambient and ambient plus 35 Pa atmospheric CO2 in nutrient unamended and amended serpentine soil. Elevated CO2 led to significantly increased Avena shoot nitrogen concentrations in the nutrient amended treatment. It also led to decreased lignin concentrations in Avena roots in both nutrient treatments, and in Plantago shoots and roots with nutrient addition. Concentrations of total nonstructural carbohydrate (TNC) and carbon did not change with elevated CO2 in either species. As a consequence of increased biomass accumulation, increased CO2 led to larger total pools of TNC, lignin, total carbon, and total nitrogen in Avena with nutrient additions. Doubling CO2 had no significant effect on Plantago. Given the limited changes in the compounds related to decomposibility and plant growth, effects of increased atmospheric CO2 mediated through tissue composition on Avena and Plantago are likely to be minor and depend on site fertility. This study suggests that other factors such as litter moisture, whether or not litter is on the ground, and biomass allocation among roots and shoots, are likely to be more important in this California grassland ecosystem. CO2 could influence those directly as well as indirectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号