首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobility and bioavailability of copper (Cu) depends on the Cu sorption capacity of soil and also on the chemical form of Cu in soils. Laboratory batch experiments were carried out to study the sorption and distribution of Cu in nine soils differing in their physicochemical properties from the oasis in the middle reaches of Heihe river basin, China: desert soil (S-1), agricultural soils (S-2, S-3, S-8, and S-9), marshland soil (S-4), and hungriness shrub soils (S-5 and S-6). Copper sorption behavior was studied using the sorption isotherm and sequential extraction procedure. In general, the sorption capacity for Cu decreased in the order: S-4 > S-9 > S-2 > S-8 > S-3 > S-6 > S-5 > S-7 > S-1. The correlation results suggest that soils with higher CEC, silt, clay, CaCO3, and organic matter will retain Cu more strongly and in greater amounts than soils that are sandy with lower CEC, CaCO3, and organic matter. pH is not an important impact factor to Cu sorption in experimental soil samples because pH in soils used in this study had a narrow range. The distribution of sorbed Cu varied between nine soils studied and depended on both soil properties and initial added Cu concentration. There are significant differences in the distribution of Cu in each soil with the increase of initial Cu concentration. The predominance of Cu associated with the available fraction, which was over 50% of the total sorbed Cu in most cases, indicates that the change of geochemical conditions might promote the release of Cu back into soil solution thus impacting organisms in the soils. The added Cu has also the tendencies to locate in the residual fraction, which was larger than 5% of the total amount extracted from the four fractions in most soils.  相似文献   

2.
Assessment of bioavailability of soil-sorbed atrazine   总被引:4,自引:0,他引:4  
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO(2) production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

3.
To explore the effect of exogenic dissolved organic matter (DOM) on Cu(II) sorption in agricultural soils, 26 agricultural soils were collected across China. Exogenic dissolved organic matter, extracting from wheat straw (DOMW) and swine manure (DOMS), respectively, were added to the soils to conduct a series of batch sorption and characterization experiments. The solid-liquid partition coefficient (Kd) ranged from 0.02 to 76.46 L g?1, suggesting different Cu(II) sorption on various soils. PCA analysis indicated that pH, free Fe/Al oxides, carbon, and total Cu content had a significant positive relationship with the Cu(II) sorption, respectively. And the contribution rate of pH was the highest (38.15%). Moreover, DOM markedly inhibited the Cu(II) sorption in alkaline soils while promoted the Cu(II) sorption in acidic soils, which were interacted by the soil properties and DOM characteristics. The effect of DOMS on Cu(II) sorption were more obvious than DOMW, which were further confirmed by Fourier transform infrared (FTIR) spectroscopy. FTIR also showed Cu(II) was primarily adsorbed on the specific functional groups, such as CO, OH, and CO, providing direct evidences for the binding of Cu(II) with DOM. This study can guide the rational use of organic fertilizers, and also provide baseline knowledge for the prevention and control of soil pollution.  相似文献   

4.
Assessment of Bioavailability of Soil-Sorbed Atrazine   总被引:4,自引:1,他引:3       下载免费PDF全文
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

5.
Napthalene- and decane-contaminated soils were treated with Triton X-100 (a nonionic surfactant) to characterize the soil-water partitioning behavior of the surfactant in soils with different organic content. Soil samples with different organic content were prepared by mixing sand-mulch mixtures at different proportions. The experimental results indicated that the amount of surfactant sorbed onto soil increased with increasing soil organic content and increasing surfactant concentration. The effective critical micelle concentration (CMC) also increased with increasing organic content in soil. The CMC of Triton X-100 in aqueous systems without soil was about 0.3 mM and the effective CMC values measured for soil-water-surfactant systems (approximately 1:19 soil/water ratio) with 25%, 50%, and 75% mulch content were 0.9, 1.0, and 1.7 mM, respectively. Sub-CMC surfactant sorption was modeled accurately with both the Freundlich and the linear isotherm. The maximum surfactant sorption onto soil varied from 66% to 82% of added surfactant in the absence of contaminant. The effective CMC values for Triton X-100 increased to some extent in the presence of contaminants, as did the maximum surfactant sorption. The maximum surfactant sorbed onto the soil with 75% mulch content increased from 82% for clean soils, to 95% and 96% for soils samples contaminated with naphthalene and decane, respectively.  相似文献   

6.
The objectives of this paper were to determine the efficiency of physicochemically modified soils with a surfactant in the sorption of pesticides, the stability against washing of the pesticides sorbed, and the effective sorption capacity of surfactant adsorbed by soils as a function of pesticide hydrophobicity and soil characteristics. Five soils of different characteristics and five pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl) with different Kow values were selected and octadecyltrimethylammonium bromide (ODTMA) was chosen as model of cationic surfactants. Sorption-desorption isotherms were obtained and constants Kf and Kfd for natural soils (from Freundlich equation) and K and Kd for ODTMA-soils (from linear equation) were determined. Sorption on ODTMA-soils was higher than on natural soils. K increased 27–165 times for penconazole, 22–77 times for linuron, 7–14 times for alachlor, 9–23 times for atrazine, and 21–333 times for metalaxyl in relation to Kf. Sorption coefficients normalized to 100% of total organic matter (TOM) from organo soils KOM (K 100/%TOM), were always higher than those from natural soils KfOM (Kf 100/%OM), indicating that the organic matter (OM) derived from the ODTMA (OMODTMA) had a greater sorption capacity than the OM of the natural soil. KOM values were also higher than the Kow (octanol/water distribution coefficient) value for each pesticide. The similarity of the high KOM values for the sorption of each pesticide by the five soils and the linearity of isotherms point to a partitioning of the pesticides between surfactant and water. The use in this work of different soils and various pesticides, unusual in this type of investigation, allowed us to obtain equations to know the sorbed amount of a given pesticide by the surfactant-modified soils as a function of the OM content derived from the cation and the Kow of the pesticide. The results obtained are of interest when it becomes necessary to increase the sorption capacity of soils with low OM contents with a view to delaying pesticide mobility in soils from pollution point sources (high concentration in small area), and preventing the pollution of waters.  相似文献   

7.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

8.
This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigated.  相似文献   

9.
Prediction of the fate of hydrophobic organic contaminants in soils is complicated by the competing processes of sorption and biodegradation. To test the hypothesis that sorbed naphthalene is unavailable to degradative microorganisms, we developed a simple kinetic method to examine the rates and extents of naphthalene degradation in soil-free and soil-containing systems in a comparison of two bacterial species. The method is predicated on the first-order dependence of the initial mineralization rate on the naphthalene concentration when the latter is below the Michaelis-Menten half-saturation constant (Km) for naphthalene for the organism under study. Rates and extents of mineralization were estimated by nonlinear regression analysis of data by using both a simple first-order model and a three-parameter, coupled degradation-desorption model described for the first time here. Bioavailability assays with two bacterial species (Pseudomonas putida ATCC 17484 and a gram-negative soil isolate, designated NP-Alk) gave dramatically different results. For NP-Alk, sorption limited both the rate and extent of naphthalene mineralization, in accordance with values predicted on the basis of the equilibrium aqueous-phase naphthalene concentrations. For strain 17484, both the rates and extents of naphthalene mineralization exceeded the predicted values and resulted in enhanced rates of naphthalene desorption from the soils. We conclude that there are important organism-specific properties which make generalizations regarding the bioavailability of sorbed substrates inappropriate.  相似文献   

10.
Prediction of the fate of hydrophobic organic contaminants in soils is complicated by the competing processes of sorption and biodegradation. To test the hypothesis that sorbed naphthalene is unavailable to degradative microorganisms, we developed a simple kinetic method to examine the rates and extents of naphthalene degradation in soil-free and soil-containing systems in a comparison of two bacterial species. The method is predicated on the first-order dependence of the initial mineralization rate on the naphthalene concentration when the latter is below the Michaelis-Menten half-saturation constant (Km) for naphthalene for the organism under study. Rates and extents of mineralization were estimated by nonlinear regression analysis of data by using both a simple first-order model and a three-parameter, coupled degradation-desorption model described for the first time here. Bioavailability assays with two bacterial species (Pseudomonas putida ATCC 17484 and a gram-negative soil isolate, designated NP-Alk) gave dramatically different results. For NP-Alk, sorption limited both the rate and extent of naphthalene mineralization, in accordance with values predicted on the basis of the equilibrium aqueous-phase naphthalene concentrations. For strain 17484, both the rates and extents of naphthalene mineralization exceeded the predicted values and resulted in enhanced rates of naphthalene desorption from the soils. We conclude that there are important organism-specific properties which make generalizations regarding the bioavailability of sorbed substrates inappropriate.  相似文献   

11.
Summary The phosphorus status of some mangrove and fresh-water hydromorphic soils of the Nigerian Niger Delta was evaluated by determining the relative abundance of various P forms and the P-sorption capacity indices. Total P was high in all soils ranging from 352 to 2055 mg/kg, with a mean of 1011 mg/kg. The saline mangrove-swamp soils had generally higher values than the fresh-water soils. Organic P formed about 34% of total P. The relative abundance of the inorganic P forms was in decreasing order, active P, occluded P and residual P. The relative distribution of active P followed the decreasing order, Fe–P, Al–P and Ca–P.The adsorption capacity was generally low in all soils. The amount of P sorbed from the addition of 150 mg/100g of soil ranged from zero to 13 mg/100g, giving an average of about 7% of added P sorbed.The abundance of active P and low content of occluded P were attributed to the poorly drained and unweathered nature of the soils. The low P adsorption suggests little capacity of the soils to fix P. The relatively high content of active P and the low P sorption capacity generally indicate high availability of P to plant in these soils.  相似文献   

12.
The characteristics of Cs sorption behavior in two soils (soil 1 and soil 2) with nearly the same clay content and exhangeable K concentration, but with different clay mineralogy, were studied by the quantification of the distribution coefficient (kd). It was observed that as the initial Cs concentration increased from 4 to 50 mg L?1, the kd values decreased in both soils, suggesting a progressive saturation of Cs available sorption sites. However, the presence of expansible 2:1 phyllosilicates minerals in the clay fraction of soil 2 maintained a high Cs sorption ability for this soil, even at high Cs concentrations. The experimental data were also fitted to the Freundlich isotherm and the results showed that parameters of the Freundlich equation could be used to estimate the degree of Cs sorption and the nature of the available sorption sites. For the studied soils, the kf and the kd values followed a similar trend and the n Freundlich constant values provided a reliable indicator for the soils’ clay mineralogy. The removal of the sand fraction enhanced Cs sorption in both soils and the absence of sorbed Cs ions on the quartz minerals, as observed by the SEM analysis, additionally supported the effect of particle-size fraction on Cs sorption.  相似文献   

13.
贵州万山汞矿区污染土壤中汞的形态分布特征   总被引:14,自引:0,他引:14  
利用优化Tessier连续化学浸提法对贵州万山汞矿区污染土壤中汞的形态分布进行研究.结果表明,稻田土壤中汞主要以残渣态形式存在(79.65%),其次为有机结合态(19.97%)、氧化态(0.31%)、特殊吸附态(0.04%)和溶解态与可交换态(0.03%);除特殊吸附态外,其他各形态汞含量均随距污染源距离增加而降低,特殊吸附态汞在分析土壤中含量变化不明显;生物可利用性(溶解态与可交换态和特殊吸附态)汞占总汞比例较低,但在污染土壤中其含量明显高于未受污染地区.  相似文献   

14.
The fate and availability of P derived from granular fertilisers in an alkaline Calcarosol soil were examined in a 65-year field trial in a semi-arid environment (annual rainfall 325 mm). Sequential P fractionation was conducted in the soils collected from the trial plots receiving 0–12 kg P ha−1crop−1, and the rhizosphere soil after growing wheat (Triticum aestivum L. cv. Yitpi) and chickpea (Cicer arietinum L. cv. Genesis 836) for one or two 60-day cycles in the glasshouse. Increasing long-term P application rate over 65 years significantly increased all inorganic P (Pi) fractions except HCl–Pi. By contrast, P application did not affect or tended to decrease organic P (Po) fractions. Increasing P application also increased Olsen-P and resin-P but decreased the P buffer capacity and sorption maxima. Residual P, Pi and Po fractions accounted for an average of 32, 16 and 52% of total P, respectively. All soil P fractions including residual P in the rhizosphere soil declined following 60-day growth of either wheat or chickpea. The decreases were greater in soils with a history of high P application than low P. An exception was water-extractable Po, which increased following plant growth. Changes in various P fractions in the rhizosphere followed the same pattern for both plant species. Biomass production and P uptake of the plants grown in the glasshouse correlated positively with the residual P and inorganic fractions (except HCl–Pi) but negatively with Po in the H2O-, NaOH- and H2SO4-fractions of the original soils. The results suggest that the long-term application of fertiliser P to the calcareous sandy soil built up residual P and non-labile Pi fractions, but these P fractions are potentially available to crops.  相似文献   

15.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

16.
Kinetics and capacity of Ni2+ and Cu2+ sorption by Chlorella vulgaris were studied using single and binary metal solutions at various concentrations of these metal ions. The second-order rate law best described the kinetics of metal sorption from both single and binary metal systems. C. vulgaris preferentially sorbed Cu2+ over Ni2+ in the binary system. In comparison to the single metal system, the amounts of Ni2+ and Cu2+ sorbed at equilibrium (qe) were respectively 73% and 25%, and the initial rate of sorption (h) was ca. 50% in the case of the binary metal system. The test metals inhibited sorption of each other, thereby indicating competition between Ni2+ and Cu2+ for sorption onto non-specific binding sites. The present study showed that C. vulgaris has specific as well as non-specific sites for the binding of Ni2+ and Cu2+. Participation of these sites for sorption depended on the ratio of Ni2+ and CU2+ in solution. The maximum metal sorption capacity of C. vulgaris was 6.75 mmol g(-1) from the binary metal solution at the tested biomass concentration (100 mg dry weight l(-1)). Total metal sorption was enhanced with increasing total concentration of both the metals up to 1.6 mM, beyond which a decrease occurred. Two-dimensional contour plots were successfully used for the first time for the evaluation of metal sorption potential.  相似文献   

17.
The relative scavenging abilities of suspended particulate oxides (SPOX), and organic matter (SPOM) for Cd, Zn and Cu were evaluated in a small, anthropogenically influenced river. In addition, the factor most important in influencing the sorption density (Ad: metal concentration associated with a given phase divided by the concentration of that geochemical phase in the suspended particulate pool) of each metal to SPOX and SPOM were identified through multiple linear regression analyses from the suite of: pH, temperature, dissolved metal concentration, and the concentration of the other particulate fraction. Results indicate that SPOX-SPOM interactions do occur in trace metal complexation reactions; and interactions are both phase and cation specific. Fe oxides are able to outcompete discrete organic binding sites for Cu and Zn as a relative decrease in the amount of these two cations sorbed to organic matter was observed with increasing particulate Fe oxides. SPOM concentration was identified as being most important in influencing Cu sorption densities associated with the SPOX fraction. Organic matter — oxide complexes are postulated to occur that enhance oxide sorption of Cu such that relatively more Cu is sorbed to particulate oxides with increasing particulate organic matter concentrations. Dissolved concentrations of Cd and Zn were found to be most important in influencing the sorption densities for these two metals associated with the oxides fraction. The sorption behaviour appears to follow Freundlich isotherm behaviour where the amount sorbed is a function of the dissolved concentration.  相似文献   

18.
Sorption and desorption are important processes that influence the transport, transformation, and bioavailability of imidacloprid in the soils. Equilibrium batch experiments were carried out using six coastal Croatian soils. The equilibrium sorption and desorption experimental data showed the best fit to the Freundlich equation. Sorption parameters predicted with the Freundlich model, KF sor and 1/n ranged from 2.92 to 5.74 (mg/kg)/(mg/L)1/n, and 0.888 to 0.919, respectively. The sorption of imidacloprid was found to be sensitive to organic carbon (OC) content. The highest sorption was observed in Krk soil (OC 4.74%) and the lowest in Zadar soil (OC 1.06%). Fitted desorption parameter values, KF des , were consistently higher than those associated with sorption. The opposite trend was observed for the exponential parameter 1/n. Results also suggested that imidacloprid sorption-desorption by soil is concentration-dependent, i.e. at lower imidacloprid concentrations a greater sorption percentage and lower desorption percentage occurred. Desorption studies revealed that there was a hysteresis effect in all the tested soils. Hysteresis coefficient values (H) varied from 0.656 to 0.859. The study results emphasize that the controlled application of imidacloprid is obligatory, especially in soils with a low organic carbon content, in order to minimize a risk of environmental and groundwater pollution.  相似文献   

19.
Heavy metal pollution in soils and the high costs of remediation necessitate the evaluation of cheaper alternatives. The aim of this experiment was to evaluate Cd, Pb, Zn, and Cu sorption characteristics of three soils and their influence on the comparative effectiveness of EDTA and legume intercrop on the remediative abilities of maize, mucuna, okra, and kenaf. The sorption studies were done using standard procedures. The EDTA-assisted phytoextraction (6 mmol kg?1) and the cowpea intercrop trials were conducted in triplicate. The metal-spiked soils were planted with maize, kenaf, and mucuna in the EDTA trial and maize, kenaf, and okra were planted in the cowpea intercrop experiment. Cadmium was prefentially sorbed in acid and alkaline soils and Cu in slightly acid soil. Cadmium uptake was significantly lower (P < 0.05) in all the plants. Bioconcentration factors of Pb, Cu, and Zn were higher (P < 0.05) in maize compared with other plants. Phytoremediative ability of the plants in trials were maize > kenaf > mucuna and okra > maize > kenaf, respectively. It was concluded that a legume intercrop can substitute EDTA- assisted phytoextraction to prevent groundwater contamination resulting from high solubility of metals by EDTA.  相似文献   

20.
An incubation experiment was executed on applying biochar as a soil remediation amendment to discuss an effect of the various addition rates on the speciation and bioavailability of heavy metals in mining-contaminated soil. The result showed that the content of Cd in soil was 9.51 times higher than the Huainan soil background values. The contents of Cu, Zn and As were 2.97, 1.60 and 1.42 times the background values, respectively, and the total contents of all heavy metals were higher than the standard values of soil environment quality GB15618-1995 set by the China Ministry of Environmental Protection. Speciation analysis indicated that Cu and Cd were mainly associated with the reducible fraction, while Zn and As were dominated by the residual fraction. After biochar was added to contaminated soil, the residual fractions of heavy metals increased, while the acid-soluble fractions reduced. According to the results of CaCl2 extraction experiment, CaCl2-extractable concentrations of Cu, Zn, As, and Cd were observed with a biochar dosage rate of 10%, which were 57.26%, 51.37%, 6.94% and 42.04% lower than those of control soil samples, respectively, but there were no obvious changes of CaCl2-extractable As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号