首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In order to investigate heavy metal contamination in an urban environment during urbanization and economic development, 35 road-deposited sediment samples were collected from seven different land-use zones (commercial, residential, traffic, scenic park, educational, industrial and peri-urban) in Nanjing, a large city in P.R. China. The ranges of total metal concentrations found were: 28.7–272 mg kg?1 for Cu; 24.8–268 mg kg?1 for Ni; 37.3–204 mg kg?1 for Pb; 140–798 mg kg?1 for Zn; 0.44–2.19mg kg?1 for Cd; and 60.6–250 mg kg?1 for Cr. Metal fractionation was carried out using a modified three-step European Bureau of References (BCR) sequential extraction procedure. Cadmium and Zn were found predominantly associated with the acid extractable fractions; Ni and Cr were dominant in the residual fraction; Pb was predominantly associated with the residual and reducible fractions; Cu was dominant in the oxidizable and residual metal fractions. Based on the sum of the acid-extractable, reducible, and oxidizable fractions, Cd, Zn and Pb are potentially the most toxic metals in the road-deposited sediment in Nanjing. No significant differences, except for Zn, were found in the metal fractionation pattern for Cu, Ni, Pb, Cd, and Cr in different land use zones.  相似文献   

2.
Heavy metal could lead to serious environmental risk to the ecosystem, destroy human health via the food chain. The heavy metal removal from sludge is an emergent issue. In this work, rhamnolipid, an environment-friendly material, was used to enhance heavy metal extraction from the sludge. The results showed that Cu, Zn, Cr, Pb, Ni, and Mn maximum extraction efficiencies were 35.10 ± 2.31%, 45.33 ± 3.24%, 27.58 ± 3.35%, 24.12 ± 3.51%, 43.31 ± 2.53% and 22.10 ± 2.11%, respectively; most of exchangeable and reducible fractions, and partly oxidizable and residual fractions have been extracted by the rhamnolipid solution. After treatment, IR values of heavy metals increased in the treated sludge, the IR values for Cu, Zn, Cr, Pb, Ni, and Mn were 0.24 ± 0.01, 0.25 ± 0.03, 0.21 ± 0.02, 0.32 ± 0.03, 0.22 ± 0.021 and 0.41 ± 0.03, respectively. MF values indicated that heavy metal mobility order was Zn>Ni>Cu>Mn>Cr>Pb in the treated sludge. According to the two risk assessment methods (risk assessment code, RAC and potential ecological risk index, PERI), the risk assessment of heavy metal was investigated in the after treatment sludge, which indicated that rhamnolipid could extract the mobility of heavy metal and lead to no or low risk to the ecosystem. Therefore, rhamnolipid was utilized to enhance heavy metal extraction from dewatered sludge in this study, which is a promising technique for heavy metal extraction from the dewatered sludge.  相似文献   

3.
The concentrations of selected heavy metals in sediments and waters in Baychebagh copper mine were determined using ICP-OES. Except for Co, the average concentrations of Cd, Cu, Pb, and Zn in sediments from the Ghalechay River in the district exceed the world-average shale and continental upper crust value. Enrichment factors for Pb, Cu, and Cd were significantly enriched in sediments, indicating environmental contamination. Geoaccumulation index calculated for different sampling stations indicates that the sediments are unpolluted with respect to Co and Zn while unpolluted to moderately polluted with Cu and highly polluted with Pb and Cd. The Sediment Quality Guidelines (SQGs) suggest that Cd and Pb may pose the highest risk for the environment. Sequential extraction analyses of sediments revealed that Cu, Co, Pb, and Zn bound to extractable, carbonate, reducible and oxidizable fractions are lower than residual fraction. About 10% of the total Pb was associated with the exchangeable fraction, indicating remobilization, while Cd (89%), Pb (73%) Co (58%), Cu (76%), and Zn (68%) closely associated with the residual and oxidizable fractions, resulting in their environmental immobility. The residual forms are not expected to be released under normal conditions in the river and could be considered an inert phase.  相似文献   

4.
This study provides geochemical partitioning, potential bioavailability, and enrichment of Cd, Cu, Pb, and Zn in bottom sediments collected from the Matanza-Riachuelo River and its main tributary streams. A modified Tessier sequential extraction procedure, complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, was applied to determine the partitioning of metals into four fractions (metals bound to amorphous sulfide, carbonate, and exchangeable), bound to Fe/Mn oxides (reducible), bound to organic matter/sulfide (oxidizable) and residual. Spatial and vertical distributions of metals were studied. The core sediments show a decreasing concentration of metals with depth. In top sediments, non-residual Cu was mainly associated with oxidizable phase, whereas Pb, Cd, and Zn were mainly associated with amorphous sulfide. Pb exhibited the highest enrichment in all sites. The ratio AVS/SEM was greater than one at sediment sections close to the water column, indicating that metals extracted with hydrochloric acid were mainly associated with the amorphous sulfide. The strong influence of amorphous sulfide in the retention of Cd, Pb, and Zn in anoxic sediments of Matanza-Riachuelo river system suggests that dredging and aeration could lead to the remobilization of metals from sediments to the water column, hence making the metals more available to the biota.  相似文献   

5.
Abstract

A five-step sequential extraction procedure was applied to organic-rich soil samples from five soil profiles situated 1–8 km from a zinc smelter. The partitioning of Zn, Cd, Pb, and Cu into five operationally defined fractions (exchangeable, “carbonate’’-bound, reducible, oxidizable, and residual) was studied at different soil depths down to 35cm. In the surface soil (0–1 cm) a major part of Pb and Cu was extracted in the oxidizable fraction, whereas for Zn and Cd slightly more was extracted in the ‘‘carbonate”-fraction than in the other four fractions. Extracted metal proportions in the oxidizable fraction were respectively of the order of 30%, 20%, 50%, and 80% for Zn, Cd, Pb, and Cu in the surface soil for all sites, but these proportions decreased with soil depth. In the surface soil less than 20% of all the elements were extracted in the residual fraction, but the proportions associated with this fraction generally increased with soil depth. In the C-horizon, differences in extracted proportions of Pb and Cu in the residual fraction were probably due to geochemical factors, whereas for Zn the low extracted proportion at a highly contaminated site (20%) may be due to Zn migration to the C-horizon at this site. For Cd the extracted proportions in the C-horizon were lower than for the other elements, generally below 20%, presumably because Cd is weaker in terms of its adsorption to the soil than the other elements studied. Total concentrations of the metals decreased strongly with increasing distance from the smelter, but less systematic differences were observed for their distributions among fractions. Potentially bioavailable metal proportions (exchangeable + “carbonate”-bound fraction) in the surface soil were about 50%, 60%, 20%, and 10% for Zn, Cd, Pb, and Cu, respectively. In C-horizon soil the mobility sequence Cd>Zn>Pb = Cu was generally observed. The present results indicate that the concentrations and chemical fractionation of Zn, Pb, and Cd in these soils represent a considerable risk to natural terrestrial food chains.  相似文献   

6.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

7.
Yuan X  Huang H  Zeng G  Li H  Wang J  Zhou C  Zhu H  Pei X  Liu Z  Liu Z 《Bioresource technology》2011,102(5):4104-4110
The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.  相似文献   

8.
强还原过程对设施菜地土壤重金属形态转化的影响   总被引:1,自引:0,他引:1  
设施菜地由于污水灌溉、粪肥施用等导致重金属污染.本文通过土柱淹水同时添加玉米秸秆培养和后期通水淋洗,研究强还原法对设施土壤重金属(Cd、Cu、Pb和Zn)形态转化的影响.结果表明: 强还原处理使土壤pH显著降低,玉米秸秆处理变化更显著;土壤氧化还原电位(Eh)迅速下降至-280 mV左右.玉米秸秆处理可以促进土壤中Cd、Cu、Pb和Zn活化,第9天土壤中有机物及硫化物结合态和残渣态Cd、Cu、Pb和Zn含量比重下降;至15 d培养结束,土壤中4种重金属含量较对照分别减少18.1%、19.0%、16.1%和15.7%.玉米秸秆处理可以增加土壤中Cd和Zn的溶出量,但是Cu的溶出量减少;胶体结合态Cd和Pb含量较对照增加、Cu较对照显著减少、Zn没有显著变化.强还原可以引起设施土壤重金属活化,提高蔬菜积累重金属的风险,而且其随土壤水分的运移可能导致水体的污染.  相似文献   

9.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

10.
以铜锈环棱螺(Bellamya aeruginosa)为测试生物,采用28 d沉积物生物积累试验研究铜锈环棱螺对污染河流沉积物中重金属的生物积累,并探讨其与重金属赋存形态的关系.结果表明:铜锈环棱螺肝胰脏对Cd、Pb、Cu、Cr、Zn和Mn均具有较强的积累作用.不同重金属的积累量存在较大差别,Zn的积累量最多,占重金属总积累量的84.32%±4.36%,其次为Cu,占7.67%±2.84%;Pb、Cr和Mn的比例相对较少,分别为3.62%±1.84%、2.22%±1.03%和1.33%±0.15%;Cd所占比例最少,为0.83%±0.53%.肝胰脏中重金属元素之间的相关性均不显著.肝胰脏金属污染指数与沉积物污染综合指数具有显著的正相关关系,铜锈环棱螺可以作为沉积物重金属污染的监测生物.不同沉积物Cd、Cr、Zn和Mn的生物-沉积物积累因子(BSAF)具有较大的差异,Cu和Pb的BSAF比较稳定.Cd的生物积累与沉积物中Cd的可交换的与酸可溶态及可氧化态显著相关;Pb的生物积累与Pb的可还原态显著相关;Cu的生物积累与Cu的可氧化态显著相关;Mn的生物积累与Mn的可交换的与酸可溶态和可还原态显著相关;Cr和Mn的生物积累与其不同形态和总量均不相关.BSAF不宜作为衡量铜锈环棱螺对沉积物中重金属生物积累能力的指标.  相似文献   

11.
New guidelines for using biosolids in UK agriculture favour the use of enhanced treated biosolids, such as dried and composted cakes, due to concerns about the potential for transfer of pathogens into the food chain. However, there is a need to ensure that their use is environmentally acceptable and does not increase the risk to potable water supplies or the food chain from other contaminants such as heavy metals and xenobiotic organic chemicals. The objective of this study was to determine whether the use of composted and dried mesophilic anaerobically digested dewatered (MADD) biosolids would increase the risk of heavy metal leaching from cultivated horizons when compared to more conventionally used MADD cake. Three biosolids (MADD sewage sludge cake - fresh, dried and composted) were mixed with a sand (typic quartzipsamments, %OM = 3.0, pH = 6.5) or a sandy loam (typic hapludalf, %OM = 4.8, pH = 7.6) at an application rate equivalent to 250 kg N/ha/y resulting in loadings of approximately Zn: 6 microg, Cu: 2 microg, Pb: 5 microg and Ni: 0.2 microg/g of soil dry weight basis. These amended soils were repacked into columns (0.4 m by 0.1 m internal diameter) and leaching of Zn, Cu, Pb and Ni was investigated following application of two 24 h simulated rainfall events of 4.5 mm/h. Water balance data and the use of conservative tracers (Cl- and Br ) showed that the hydrological regimes of each core were comparable and, thus, unlikely to account for differences in metal leaching observed. Although no significant difference (P = 0.05) was observed between biosolid amended and control soils, those amended with composted sludge consistently gave higher loss of all metals than did the control soils. Total losses of metals from compost amended soil over the two rainfall events were in the ranges, Zn:20.5-58.2, Cu:9.0-30.5, Pb:24.2-51.2 and Ni:16.0-39.8 microg metal/kg amended soil, compared with Zn:16.4-41.1, Cu:6.2-25.3, Pb:16.9-41.7, and Ni:3.7-25.4 microg metal/kg soil from the control soils. Losses of Zn, Cu, Pb and Ni from fresh MADD cake amended soils (19.8-41.3, 3.2-25.8, 21.6-51.6 and 7.6-36.5 microg metal/kg amended soil, respectively) and from dry MADD cake amended soils (10.7-36.7, 1.8-23.8, 21.2-51.2 and 6.8-39.2 microg metal/kg amended soil, respectively) were similar to the controls. Generally, quantities of metals leached followed the order Zn = Pb > Cu > Ni, which was consistent with the levels of metals in the original sludge/soil mixtures. These results suggest that composting or drying MADD biosolids is unlikely to increase the risk of groundwater contamination when compared to the use of MADD cake; therefore, the changes in UK sludge use in agriculture guidelines are satisfactory in this respect.  相似文献   

12.
Abstract

Sequential extraction or fractionation of heavy metals in the solid phase and their speciation in soil solution are important tools for assessing changes resulting from land use and/or pollution. The distribution of the various forms of Ba, Cu, Ni, Pb and Zn was evaluated in soil samples taken from a polluted area, and the speciation of cations and anions in a soil solution contaminated with automotive industry waste. We evaluated the sequential extraction and speciation of Ba, Cu, Ni, Pb and Zn in a Leptosol associated with a Cambisol and contaminated with automotive industry waste. Soil samples were collected at 0-0.2 m (a mix of soil and waste); 0.2-0.4 m (waste only), and 0.4-0.6 m (soil only) both in the polluted area and in two contiguous unpolluted areas: a sugarcane plantation and a forest fragment. Total concentrations of metals in the polluted area were above limits for intervention established by European Community regulations. Cu was mostly distributed in the residual and in the oxide-bonded fractions, except for the waste-only sample, in which the carbonate-bonded fraction was significant. Zn was concentrated in the residual and carbonate-bonded fractions, while Ba, Ni and Pb predominated in the residual fraction of the contaminated samples. Metals in the soil solution were predominantly in the hydroxyl forms, except for Ba, which was mostly in the ionic form (Ba2+).  相似文献   

13.
Leaching column experiments were conducted to determine the degree of mobility and the distribution of zinc (Zn), cadmium (Cd), and lead (Pb) because of an application of spiked sewage sludge in calcareous soils. A total of 20 leaching columns were set up for four calcareous soils. Each column was leached with one of these inflows: sewage sludge (only for two soils), spiked sewage sludge, or artificial well water (control). The columns were irrigated with spiked sewage sludge containing 8.5 mg Zn l?1, 8.5 mg Cd l?1, and 170 mg Pb l?1 and then allowed to equilibrate for 30 days. At the end of leaching experiments, soil samples from each column were divided into 18 layers, each being 1 cm down to 6 cm and 2 cm below that, and analyzed for total and extractable Zn, Cd and Pb. The fractionation of the heavy metals in the top three layers of the surface soil samples was investigated by the sequential extraction method. Spiked sewage sludge had little effect on metal mobility. In all soils, the surface soil layers (0-1 cm) of the columns receiving spiked sewage sludge had significantly higher concentrations of total Zn, Cd and Pb than control soils. Concentration of the heavy metals declined significantly with depth. The mobility of Zn was usually greater than Cd and Pb. The proportion of exchangeable heavy metals in soils receiving spiked sewage sludge was significantly higher than that found in the control columns. Sequential extraction results showed that in native soils the major proportion of Zn and Pb was associated with residual (RES) and organic matter (OM) fractions and major proportion of Cd was associated with carbonate (CARB) fraction, whereas after leaching with spiked sewage sludge, the major proportion of Zn and Pb was associated with Fe-oxcide (FEO), RES, and CARB fractions and major proportion of Cd was associated with CARB, RES and exchangeable (EXCH) fractions. Based on relative percent, Cd in the EXCH fraction was higher than Zn and Pb in soils leached with spiked sewage sludge.  相似文献   

14.
The extractable contents of Zn, Pb, Cu, Cr, Mn, Ni, Fe and Al were evaluated in sediments from the Lis River (Portugal) using the three-step sequential extraction procedure described by Community Bureau of Reference (BCR, now the Standards, Measurement and Testing Programme) of the European Union. The distribution of trace metals among the exchangeable, water and acid soluble, reducible, oxidizable and residual fractions was determined. The highest metal concentrations were observed in samples collected at the most polluted river sites (animal husbandry, domestic, industrial and agricultural wastes). Pb, Cu, Cr, Ni, Fe and Al were found mainly associated with the residual and organic fractions. High concentrations of Zn and Mn were found in the exchangeable/acid soluble fraction.  相似文献   

15.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

16.
The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge.  相似文献   

17.
研究了污泥生物沥滤对重金属(Cu、Pb和Zn)形态、营养物质和SO42-存在形式的影响,分析生物沥滤污泥土地利用的适用性。结果表明:生物沥滤后,污泥上清液中重金属通过固液分离而去除,污泥中Cu、Pb和Zn的去除率分别为84.1%、34.8%和80.0%,残存于污泥中的重金属含量大幅降低,且生物有效性低,提高了污泥土地利用的安全性。污泥经生物沥滤后氮、磷和钾的流失分别为38.2%、52.1%和42.8%,但仍能保持较好的肥效。采用X-射线衍射光谱分析发现,残留于污泥中的SO24-主要与Ca2 相结合,较为稳定,生物沥滤后的污泥施用于土地后对环境影响较小。  相似文献   

18.
柠檬酸、草酸和乙酸对污泥中镉、铅、铜和锌的去除效果   总被引:4,自引:0,他引:4  
研究了柠檬酸、草酸和乙酸对污泥中Cd、Pb、Cu和Zn等重金属的去除效果,并分析了污泥中重金属的形态变化和生物有效性.结果表明,随着反应时间和酸浓度的增加,污泥中重金属(Cu除外)的去除率也相应增加.污泥加入柠檬酸溶液反应7 h即可去除污泥中52.0%的Pb和74.2%的Zn, 24 h后可去除76.0%的Pb和92.5%的Zn,草酸和乙酸对重金属的去除率较低.柠檬酸去除的Pb和Zn主要以稳定态存在,并导致污泥中不稳定态重金属的比例上升,其中可交换态重金属浓度有不同程度的增加.虽然有机酸对Cd和Cu的去除率较低,但反应后可交换态Cd和Cu的浓度仍有小幅增加.  相似文献   

19.
The losses of weight and organic matter of a sludge caused by thermal treatments at 180 degrees C, 300 degrees C and 400 degrees C were determined in order to assess how the possibilities of sludge use were influenced. The sludge heated at 180 degrees C lost small amounts of weight and organic matter (9.8%) but the losses from the two other treatments were large enough (92.2% and 99.9% in organic matter) to preclude the use of the sludges as organic amendments. The concentration and potential lability and leachability of Cr, Cu, Fe, Mn, Ni, Pb and Zn in the native sludge and in the thermal-treated sludge samples were studied by means of a five-step chemical fractionation method and a column experiment. As a consequence of heating, the trace metals were more strongly fixed in the treated sludges, as could be seen by the decrease with temperature of the ratio between the sum of the first two sequential-extracted fractions and the residual fraction. The leaching results showed that, for the native sludge, the quantities of studied metals leached were larger than for the sludge heated to 180 degrees C. The order of leachability of metals was the same in both cases, and the same equation could be used to calculate the quantities of metals leached. The amounts of metals leached correlated significantly with the first extracted fraction (exchangeable metals) and an equation could be used to calculate the quantities leached, as a function of that fraction.  相似文献   

20.
To explore potential ecological hazards due to heavy metals in the Dianchi Lake Watershed, a three-stage European Community Bureau of Reference (BCR) sequential extraction procedure was applied to examine the spatial distributions and relative speciation ratios of Zn, Cu, Ni, Pb, and Cr in Baoxiang River sediments during wet and dry seasons. The metal species have similar spatial variations during different seasons. In the upstream reaches of the Baoxiang River, heavy metals reside primarily in the non-extractable residual fraction (72–90%). In the midstream, the residual fraction (35–89%) remains dominant, but the extractable fraction increases, featuring especially notable increases in the reducible fraction (5–40%). Downstream, the Cu, Ni, Pb, and Cr residual fractions remain high (46–80%) and the extractable fractions increase rapidly; the Zn extractable fraction is quite high (65.5%). Anthropogenic sources drive changes in heavy metal speciation. Changes in the river environment, such as pH and oxidation-reduction potential, also affect speciation. The reducible fraction of heavy metals in Baoxiang River sediments is most sensitive to pH. Potential ecological risk assessments for these five elements indicate that risks from Zn and Pb are mild to moderate in the middle and lower reaches of the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号