首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

2.
Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.  相似文献   

3.
In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.  相似文献   

4.
A greenhouse pot experiment was conducted to evaluate the feasibility of using a native ornamental plant, Mesua ferrea L. as phytostabilizer for chromium ore tailings (COT) and to assess the metal accumulation capacity. Different ratios of soil and COT were taken in pots and sowed with seeds of M. ferrea. Plants were harvested at various intervals and separated into roots and shoots for analysis of metal concentrations and physiological characteristics of the plants. The study revealed that the plant has great tolerance and stronger ability to accumulate Cr. The results suggested an increase in growth, chlorophyll content, antioxidant activities, as well as metal accumulation capacity of M. ferrea with increasing proportion of COT in the soil. This indicates the plant's efficiency to overcome any stress generated due to excess of chromium as well as other heavy metals. The order of accumulation of heavy metals was observed to be Fe>Cr>Ni>Cd>Co. The accumulation of Cr was higher in root compared to that in shoot. M. ferrea has found to be potential as a native species candidate for phytostabilization of chromium mine tailings.  相似文献   

5.
Abstract A growth experiment with native plants in pots exposed to natural environmental conditions evaluates the use of sewage sludge as a soil amendment in restoration of a southern California salt marsh. Sludge containing desirable organic matter but also undesirable heavy metal contaminants was mixed with a readily available matrix soil to reduce metal concentrations to levels below legal limits for land applications of sludge. Soil nutrient analysis revealed expected increases in total nitrogen and total phosphorus content with increasing sludge concentration. Soil metals analysis, however, revealed decreases in metal content with increased sludge concentration, a trend evidently caused by higher than expected metal content in the matrix soil. Five artificial soil mixtures ranging from 0 to 70% sludge were accompanied by natural wetland soil controls. Pots containing these soils were placed into a natural salt marsh. The pots were then planted with two native salt marsh plant species, Salicornia virginica and Frankenia grandifolia. Aboveground biomass was harvested after 12 months. Plant growth displayed no obvious change with increasing sludge concentration. Over the concentration ranges used, increased nutrient content did not stimulate plant growth and increased metal content did not inhibit plant growth. Plants grew better in natural wetland soil than in artificial soil mixtures, a trend probably caused by the substantially finer texture and higher organic content of natural soil. All sludge treatments differed more from the natural soil than from each other, implying that within the ranges examined, soil texture and organic content exerted more influence on plant growth than did metal or nutrient concentration. These results suggest that incorporating this sewage sludge in the soil of the restored salt marsh will neither benefit nor harm the plants that will live there and that greatest plant growth will be achieved by mixing the sludge with a fine‐grained matrix soil.  相似文献   

6.
The submerged aquatic plant Myriophyllum spicatum L. (Eurasian water milfoil) has been suggested as an efficient plant species for the treatment of metal-contaminated industrial wastewater. The process of metal removal by plants involves a combination of rapid sorption on the surface and slow accumulation and translocation in the biomass. This study focussed on the sorption/desorption characteristics of the surface of M. spicatum for Co, Cu, Ni and Zn. Batch sorption tests with mixed metal solutions covering a range of 0, 1, 5, 10, 50 and 100 mg l−1 of each metal, were performed. For Co, Ni and Zn, the sorption process was well described by the Langmuir model, whereas sorption of Cu was better described by the Freundlich model. The biomass showed the highest affinity for Cu and Zn. Langmuir sorption maxima of Co, Ni and Zn were 2.3, 3.0 and 6.8 mg g−1 DM, respectively. At the highest initial concentration of 100 mg l−1, a maximum of 29 mg g−1 DM of Cu was sorbed onto the surface of the biomass. Desorption by 0.1 M HCl did not fully recover the metals sorbed onto the surface and there was evidence of leaching from within the biomass. Recovery of heavy metals and regeneration of the biomass by washing with 0.1 M HCl was therefore not suggested as a viable strategy.  相似文献   

7.
Abstract

Techniques available for assessing the tolerance of plants to heavy metal toxins are reviewed. All are based on physiological responses and range from long-term growth trials in metal-contaminated substrates, to rapid cytological tests. Problems associated with the ecophysiological interpretation of in vitro measurements of tolerance are considered. The implications of multiple tolerance, co-tolerance, constitutional tolerance, inducible tolerance and possible stimulatory effects of metals on plant responses are discussed.  相似文献   

8.
The present paper aims to perform a screening of native plants growing in Kettara mine-Marrakech (Southern Morocco) for its phytoremediation. Plants and soil samples were collected and analyzed for Pb, Zn, Cu and Cd concentrations at several sites in the mine. The results showed that the soil in the vicinity of Kettara mine is deficient in major elements and contain toxic levels of metals. Spontaneously growing native plants were botanically identified and then classified into 21 species and 14 families. Significant difference was observed among the average concentrations of four heavy metals (Pb, Zn, Cu and Cd) in plants (p ≤ 0.05). Six plants of 21 species namely Hammada scoparia (Pomel) Iljin, Hirschfeldia incana (L.) Lagreze-Fossat, Lamarckia aurea (L.) Moench, Calendula algeriensis Boiss. & Reuter, Aizoon hispanicum L. and Melilotus sulcata Desf. were considered as the best-performing specimens due to their high ability to accumulate multiple metals in their shoots and roots without sustaining toxicity. This was confirmed by the transfer factors generally higher than 1. Using the most common criteria to classify the hyperaccumulator plants, these species can be classified as new accumulator plants of many heavy metals and be potentially used as remediation tools of metal-contaminated sites.  相似文献   

9.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

10.
Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L?1), and 3 concentrations of Ni (1, 2 and 5 mg L?1). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea . Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.  相似文献   

11.
Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.  相似文献   

12.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

13.
Contamination with heavy metals is one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation might potentially be used to remediate metal-contaminated sites. A major advance in the development of phytoremediation for heavy metal affected soils was the discovery of heavy metal hyperaccumulation in plants. This study applied several established criteria to identify hyperaccumulator plants. A case study was conducted at a mining area in the Hamedan province in the west central region of Iran. The results indicated that plant metal accumulation differed among species and plant parts. Plant species grown in substrata with elevated metal levels contained significantly higher metal levels. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of specific heavy metals measured in this study and they might potentially be used for the phytoremediation of contaminated soils.  相似文献   

14.
The remediation of heavy metal-contaminated sites using plants is a promising alternative to current methodologies. In this study, small-scale wetlands were constructed to search for new plant species that are suitable and hold potential for phytoremediation of heavy metal-contaminated wastewater originating from an electroplating plant. Ten macrophyte species [Phragmites australis (Cav.) Trin., Typha orientalis Presl, Lythrum salicaria Linn., Arundo donax Linn. var. versicolor Stokes, Typha minima Funk, Juncus effusus L., Pontederia cordata L., Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth., Acorus calamus Linn., and Iris pseudacorus Linn.] were investigated and compared for their shapes, biomass, roots, and ability to accumulate heavy metals. Acorus calamus Linn., T. orientalis Presl, P. australis (Cav.) Trin., T. minima Funk, and L. salicaria Linn. exhibited the highest levels of metal tolerance, whereas P. cordata L., I. pseudacorus Linn., and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth. had the lowest. Some plants accumulated higher concentrations of metals in the tissues compared with other species such as T. minima Funk, P. australis (Cav.) Trin., L. salicaria Linn., A. donax Linn. var. versicolor Stokes, P. cordata L., and A. calamus Linn., whereas T. orientalis Presl and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth. had poor capacity to accumulate heavy metals. The results showed that, of the 10 species, P. australis (Cav.) Trin., A. calamus Linn., T. minima Funk, and L. salicaria Linn. are the most suitable and promising plant materials for phytoremediation of heavy metal-contaminated wastewater.  相似文献   

15.
At present, no efficient technique is available for cleaning up soils which are highly polluted by heavy metals. Limiting the movement of pollutants out of the contaminated area by creating a dense and persistent plant cover appears to be the more reasonable approach. In this context, phytostabilization is a technique that uses metallicolous plants to revegetate highly polluted soils. This paper presents the results of an experiment performed in situ using metallicolous ecotypes of four plant species native to the Mediterranean French region, and grown in different combinations at a polluted site over two years. The soils were highly polluted with zinc, cadmium and lead. The aim was to find the best species mixture in terms of cover, biomass and duration. The four species used were the biennial legume Anthyllis vulneraria, two perennial grasses, Festuca arvernensis and Koeleria vallesiana, and the perennial forb Armeria arenaria. Mixtures which included A. vulneraria, and especially when in combination with F. arvernensis, showed the highest values of cover and biomass. After flowering, the biennial individuals of A. vulneraria disappeared but subsequent germination and survival of seedlings occurred abundantly under the two grasses. Mixtures with A. arenaria showed the lowest values of cover and biomass. Soil nitrogen increased in the plots with A. vulneraria as well as the concentration of essential nutrients (N P K) in the aerial parts of the two grasses. In contrast, the concentration of metals (Zn Pb Cd) decreased in the aboveground biomass of the latter in the same plots. These results show that reciprocal facilitation effects can act in heavy metal polluted environments, and that phytostabilization efforts in the Mediterranean region can be improved by using mixtures including local metallicolous legume and grass species.  相似文献   

16.
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.  相似文献   

17.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

18.
蚯蚓-菌根在植物修复镉污染土壤中的作用   总被引:24,自引:2,他引:22  
成杰民  俞协治  黄铭洪 《生态学报》2005,25(6):1256-1263
以灰化土(Aquods)为供试土壤,分别加入4个浓度的Cd2 (0,5,10,20mg/kg)模拟土壤污染,设置每钵接种8条蚯蚓(Pheretimasp.)、接种菌根(InoculumEndorize-Mix2)和同时接种蚯蚓和菌根的处理,以不加蚯蚓和菌根为对照,并种植黑麦草(Loliummultiflorum),研究蚯蚓菌根相互作用对Cd污染土壤中黑麦草生长及土壤中Cd生物有效性的影响。结果表明菌根浸染率不受添加Cd浓度的影响,平均浸染率为22%,加入蚯蚓能使菌根的侵染率提高9%。在Cd污染土壤上,引进蚯蚓显著增加了黑麦草地上部的生物量,接种菌根对黑麦草地上部分产量没有明显影响,同时接种蚯蚓和菌根与只接种蚯蚓相比没有显著差异。蚯蚓活动显著提高了土壤中CaCl2-Cd的含量,而菌根只在低浓度Cd处理上增加了土壤中CaCl2-Cd含量,二者对H2O-Cd、DTPA-Cd均无显著影响,蚯蚓和菌根对增加土壤有效态Cd含量不存在协同作用。蚯蚓活动促进了黑麦草对Cd的吸收,但吸收的Cd积累于黑麦草根部。接种菌根不仅能促进黑麦草对Cd的吸收,而且还能促进Cd从植物的根部向地上部分转移,由于接种蚯蚓可以提高菌根的浸染率,所以二者具有促进Cd向地上部转移的协同作用。这对于重金属污染土壤的植物修复具有十分重要的意义。  相似文献   

19.
We tested the effect of the addition of biosolids combined with a native mycorrhizal inoculum (Arbuscular Mycorrhizal Fungi [AMF]) on growth of a native Australian grass, and on trace element stabilization of sulphidic gold mine tailings. A glasshouse trial was established on four substrates: tailings (T); tailings with a layer of 5 cm topsoil (TS); tailings amended with 100 dry t ha?1 biosolids (LB), and tailings amended with 500 dry t ha?1 biosolids (HB). Pots of 1.2 L of capacity were established; some were inoculated with a mixture of Glomus sp. (WUM51–9227), Scutelospora aurigloba (WUM51–53), and Acaulospora levis (WUM46) culture mix, and others were uninoculated controls. Seeds of the native Australian grass, Bothriochloa macra were sown in the pots. Root infection, plant biomass production, nutrients and trace element concentrations in shoots were investigated. Addition of biosolids significantly increased AMF infection of roots compared to unamended substrates. No clear qualitative differences in colonization were detected. Addition of biosolids and AMF together clearly improved the establishment and growth of the native grass. Similar trends in nutritional status were shown for biosolids and inoculation with AMF treatments. Mycorrhizal inoculation increased plant biomass production and the effectiveness of nutrient uptake. The combined use of biosolids and mycorrhizal inoculation could be a reliable method for phytostabilization purposes in polluted substrates.  相似文献   

20.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号