首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yi L P  Ma J  Li Y 《农业工程》2007,27(9):3565-3571
North-West China is an arid region where halophyte plants are rich. Very little is known on the rhizospheric soil of the halophytes in this arid desert region. We conducted a rhizobag experiment on the desert Solonchak soil to investigate the salt and nutrient content in the rhizospheric soil of the desert halophytes. The total salt and the concentrations of 8 major kinds of salt ions increased in the rhizosphere of both succulent halophytes and salt secreting halophytes, but this increase was insignificant for salt-resisting halophytes. Accumulation of Cl and Na+ is the most significant among the 8 major kinds of salt ions. Accumulation of Cl was more significant than that of SO42– in succulent halophytes and salt secreting halophytes. The Na+/K+, Na+/Ca2+ and Na+/Mg2+ ratios in the rhizosphere of all 7 kinds of halophytes were higher than those in the bulk soil. Total N increased significantly in the rhizosphere, but total P and total K decreased. However, the available N, P and K in the rhizosphere of the 7 kinds of halophytes except Phragmites communis Trin. behaved in such an opposite way that available N decreased but available P and available K increased. The ionic contents in the aboveground parts were higher than those in the underground parts of the 7 kinds of halophytes, in particular of both the succulent halophytes and the salt secreting halophytes. Accumulation of Cl and Na+ in the aboveground parts of the plants was the most significant among that of the 8 major kinds of salt ions.  相似文献   

2.
In the sabkha of Soliman (N‐E Tunisia), soil samples of the upper 20 cm were taken during the driest period of the year (July–August) from inside and outside tufts of two perennial halophytes: Arthrocnemum indicum (Willd.) Moq. and Suaeda fruticosa Forssk., both from family Chenopodiaceae. Samples were analysed for electrical conductivity of the saturation paste extract (ECe) and soluble sodium (Na+) content. Then, tufts were divided into three size categories and their shoot biomass production and Na+ content were determined. Our results showed a considerable contribution of shoot Na+ accumulation to rhizosphere desalination. The capacity of the two native halophytes A. indicum. and S. fruticosa to desalinize saline soils was compared with that of an introduced halophyte, Sesuvium portulacastrum L. (Aizoaceae). Seedlings were grown under greenhouse conditions in pots containing 8 kg of saline soil each. Pots were irrigated with tap water during 170 days without leaching. Our results confirmed the contribution of shoot Na+ accumulation to soil desalination. They showed also that among the three studied species, Sesuvium portulacastrum L. seems to be the most convenient to be used for this purpose in arid and semi‐arid regions where precipitation is too low to leach salts from rhizosphere.  相似文献   

3.
The aim of this investigation was to evaluate the ability of the indifferent halophyte Sulla carnosa Desf. to desalinize a moderately-salt-affected soil. Seeds were sown on a fertile soil added or not with 1.5 g NaCl. kg?1. Analogous treatments without plantation (control and salinized) were also used. Plant culture was performed under greenhouse conditions in non-perforated pots containing 10 kg soil each and irrigated with non-saline tap water. After 80 days of treatment, shoots were harvested. Soil samples were also collected after division of soil column in each pot into two horizons. Our results showed that salt addition increased electrical conductivity of saturation paste extract (ECe) from 3.3 to 8.4 dS. m?1 and soluble sodium concentration from 0.32 to 1.15 g. kg?1 soil in the upper horizon. In the lower horizon however, Na+ concentration was quasi-constant and then ECe was less increased. Plant culture inversed this pattern of sodium accumulation and salinity. Its productivity and phytodesalination capacity in 80 days were 5.0 t DW. ha?1 and 0.3 t Na+. ha?1 (24% of the added quantity), respectively. Interestingly, sodium dilution within biomass (41.5–45.6 mg. g?1 DW) and the non-altered nutrition make this plant suitable for forage as second use after phytodesalination.  相似文献   

4.
Salt Tolerance and Crop Potential of Halophytes   总被引:3,自引:0,他引:3  
Although they represent only 2% of terrestrial plant species, halophytes are present in about half the higher plant families and represent a wide diversity of plant forms. Despite their polyphyletic origins, halophytes appear to have evolved the same basic method of osmotic adjustment: accumulation of inorganic salts, mainly NaCl, in the vacuole and accumulation of organic solutes in the cytoplasm. Differences between halophyte and gly-cophyte ion transport systems are becoming apparent. The pathways by which Na+ and Cl? enters halophyte cells are not well understood but may involve ion channels and pinocytosis, in addition to Na+ and Cl? transporters. Na+ uptake into vacuoles requires Na+/H+ antiporters in the tonoplast and H+ ATPases and perhaps PPi ases to provide the proton motive force. Tonoplast antiporters are constitutive in halophytes, whereas they must be activated by NaCl in salt-tolerant glycophytes, and they may be absent from salt-sensitive glycophytes. Halophyte vacuoles may have a modified lipid composition to prevent leakage of Na+ back to the cytoplasm. Becuase of their diversity, halophytes have been regarded as a rich source of potential new crops. Halophytes have been tested as vegetable, forage, and oilseed crops in agronomic field trials. The most productive species yield 10 to 20 ton/ha of biomass on seawater irrigation, equivalent to conventional crops. The oilseed halophyte, Sali-cornia bigelovii, yields 2?t/ha of seed containing 28% oil and 31% protein, similar to soybean yield and seed quality. Halophytes grown on seawater require a leaching fraction to control soil salts, but at lower salinities they outperform conventional crops in yield and water use efficiency. Halophyte forage and seed products can replace conventional ingredients in animal feeding systems, with some restrictions on their use due to high salt content and antinutritional compounds present in some species. Halophytes have applications in recycling saline agricultural wastewater and reclaiming salt-affected soil in arid-zone irrigation districts.  相似文献   

5.
Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm?1 of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60–75 DAS). About 95 percent seed germination occurred up to 12 dSm?1 and thereafter declined slightly. Mean plant height and dry weight plant?1 were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant?1 respectively upon salinization. Na+/K+ ratio (0.87 to 2.72), Na+/ Ca2+ + Mg2+ (0.48 to 1.54) and Cl?/SO42– (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm?1 and 1.85 to 7.12% at 20 dSm?1 of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant?1), Atriplex lentiformis (777.87 mg plant?1) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant?1) and Parkinsonia aculeata (310.59 mg plant?1) were the least hyperaccumulator plants.  相似文献   

6.
There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl?) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl? and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl? ha?1 and 8 to 74 kg Na+ ha?1, while annual uptake ranged from 8 to 54 kg Cl? ha?1 yr?1 and 3 to 23 kg Na+ ha?1 yr?1. Full-rotation uptake was greatest from 4 to 9 years (Cl?) and 4 to 8 years (Na+), with maximum levels of Cl? (32 kg ha?1 yr?1) and Na+ (13 kg ha?1 yr?1) occurring in year six. The relative uptake potential of Cl? and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.  相似文献   

7.
In order to test the feasibility of using native halophytes to reclaim brinecontaminated soil, seedlings of five inland halophytes, Atriplexprostrata, Hordeum jubatum, Salicornia europaea, Spergularia marina, and Suaeda calceoliformis, were planted at threedensities on a site near Athens, Ohio which had been contaminated by oilwell brine water. Ten replicates of each density treatment weretransplanted on two distinct areas of high and low salinity in May of 1993. Seedling survivorship, soil moisture, and soil salinity were monitored weeklythroughout the growing season. Biomass production and ion uptake weredetermined for each plant surviving until harvest. Soil analyses wereperformed prior to planting and after harvest to determine overall changesin soil chemistry and to determine the amount of Na+ reductionfrom the soil due to leaching by precipitation during the course of theexperiment. Survival was determined to be density independent for all ofthe species with the exception of S. marina where survival wasfacilitated at high density. Increased salinity negatively affected the survivaland yield of A. prostrata. The remaining species had greater survivalunder high salinity conditions, and density appeared to be the key factorinfluencing yield. Sodium and chloride ions were accumulated in planttissues in much greater amounts than K+, Ca+2or Mg+2. Salicornia europaea plants grown in high densityon the high salinity site accumulated the highest amount of Na+ andH. jubatum grown in low density on the high salinity site accumulatedthe lowest amount of Na+. Soil salinities measured directly from theroot zone were significantly reduced (p<0.05) at the end of thegrowing season when compared to their controls. Atriplex prostrata(high density/low salinity) plots produced the greatest reduction in soilsalinity (15.8%) and S. marina (high density/high salinity) plots hadthe least reduction (1.2%).  相似文献   

8.
Previous studies on the identification of ion relations in halophytes have revealed that many members of Chenopodiaceae accumulate high amounts of sodium and chloride even in soils with low salinity, indicating a typical pattern which is genetically fixed. In this study, we followed up with the question of ion relations in different halophyte species with different photosynthetic pathways and different salt tolerance strategies over a complete growing season. Soil and plant samples from five species Climacoptera turcomanica (Litv.) Botsch. (leaf succulent-C4), Salicornia persica Akhani subsp. rudshurensis Akhani (stem succulent-C3), Halimocnemis pilifera Moq. (leaf succulent-C4), Petrosimonia glauca (Pall.) Bunge (leaf succulent-C4) and Atriplex verrucifera M. Bieb. (recreto-halophyte-C3) were collected over a complete growing season from a salt flat 60 km W of Tehran. The contents of main cations (Na+, K+, Ca2+, and Mg2+) and chloride were determined in plant and soil samples. Na+ and Cl? concentration in the shoots of two hygro-halophytes Climacoptera turcomanica and Salicornia persica subsp. rudshurensis were constant over the period of the growing season. In contrast, sodium and chloride in the shoots of Halimocnemis pilifera and Petrosimonia glauca showed respectively an increasing and, in the shoots of Atriplex verrucifera, a decreasing, trend. We did not notice any decreasing trend of K+ together with increasing trend of Na+ in the shoots of the studied species; however K+ in the shoots of all examined species was considerably lower than Na+ and Cl?. It was observed that Climacoptera and Salicornia could absorb and retain calcium even in high salinity conditions, while Halimocnemis and Petrosimonia could not. Na+, K+, Cl?, Ca2+, and Mg2+ contents in the shoots of different types of halophytes (stem-succulent, leaf-succulent and excreting halophyte) or different type of photosynthesis (C3, C4) are independent of those in their rhizosphere. We concluded that it is controlled by the genetic characteristic of the specific taxon rather than by the environment.  相似文献   

9.
Kinetics of sodium (Na+) and calcium (Ca2+) uptake were studied in cardinal tetras Paracheirodon axelrodi acclimated to humic substances (HS, 35 mg C l?1) and low pH (pH 3·72), parallel to analysis of whole body Na+ and Ca2+ content. This species had a high uptake capacity (Jmax) for both Na+ and Ca2+ in soft, ion‐poor water. The affinity constant (Km) did not vary significantly among treatments for either Na+ or Ca2+. Jmax Na+ increased 30% in fish acclimated to HS for 5 weeks. Acclimation to low pH had no effect on Jmax Na+ but this treatment was associated with a 32% decrease on whole body Na+ content, suggesting that fish were unable to compensate for the increased Na+ loss induced by extreme acidity. Exposure of fish to HS + low pH, the treatment most closely approximating to the conditions experienced by the species in its native environment, resulted in an increase in whole body Na+ by 31% relative to acclimation to low pH alone. Jmax Ca2+ in cardinal tetras was high relative to that documented in other freshwater species acclimated to soft water (Jmax= 30 nmol g?1 h?1). Prolonged exposure of fish to pH 3·72 inhibited Jmax Ca2+ by 53%, although whole body Ca2+ content remained unchanged relative to control. Acclimation of fish to HS + low pH resulted in an increase of Jmax Ca2+ by 166% relative to low pH alone. Collectively, these results suggest that HS protect cardinal tetras acclimated to soft, acidic waters by preventing excessive Na+ loss (as indicated by whole body Na+ content) and by stimulating Ca2+ uptake (as indicated by increased Jmax Ca2+) to ensure proper homeostasis.  相似文献   

10.
Abstract Salt-tolerant grasses and a sedge were grown at three salinities in a controlled-environment greenhouse. They were measured for growth rate, ash content, water content and cations. Fourteen species from the genera Sporobolus, Aeluropus, Leptochloa, Paspalum, Puccinellia, Hordeum, Elymus, Distichlis and Spartina survived up to the highest salt treatment (540 mol m?3 NaCl). These were designated halophytes. Eleven species from the genera Triticum, Phragmites, Dactylotenium, Cynodon, Polypogon, Panicum, Jovea and Heleocharis only survived up to 180 mol m?3 NaCl and were designated salt-tolerant glycophytes. All species except Distichlis palmeri grew fastest on the non-saline control treatment. All species tended to have higher Na+ contents and lower K+ and water contents on saline treatments compared to control plants. Halophytes differed from glycophytes in having statistically significant lower water contents on the non-saline treatment, and lower ash contents and Na:K ratios on 180 mol m?3. However, the range of values among species was greater than the differences between halophytes and glycophytes. All species appeared to use Na+ accumulation and loss of water as the main means of osmotic adjustment. Three halophytic species were grown for a longer period of time to check the above results. The osmolality of the cell sap was measured directly by the vapour pressure method and compared to calculated values based on Na+, K+ and water contents (and assuming a balancing anion such as Cl?). Na+ and K+ alone could account for greater than 75% of the osmotic potential at all salinities. Hence, the accumulation of organic solutes did not appear to be an important factor in the osmotic adjustment of these species. The results support the conclusion that grasses coordinate Na+ uptake and water loss to maintain a constant osmotic potential gradient between the shoot tissues and the external solution. The results were compared to a previous study with dicotyledonous halophytes at the same location.  相似文献   

11.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41?°S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy–soil–atmosphere interactions and to calculate input–output budgets. From May 1999 till April 2000, the experimental watershed received 8121?mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527?mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6?kg?ha?1?year?1 and 8.2?kg?ha?1?year?1 respectively. Occult deposition (clouds?+?fog) contributes for 40% to the atmospheric nitrogen input (bulk?+?occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9?kg?ha?1?year?1) and organic (5.2?kg?ha?1?year?1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2?kg?DIN?ha?1?year?1 and 5.6?kg?DON?ha?1?year?1). The low concentrations of NO-3 and NH+4 under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

12.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

13.

Background and Aims

Habitats occupied by many halophytes are not only saline, but are also prone to flooding. Few studies have evaluated submergence tolerance in halophytes.

Methods

Responses to submergence, at a range of salinity levels, were studied for the halophytic stem-succulent Tecticornia pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na+, Cl and K+, in succulent stems, were assessed in a NaCl dose-response experiment.

Key Results

Submerged plants ceased to grow, and tissue sugars declined. Photosynthesis by succulent stems was reduced markedly when underwater, as compared with in air. Capacity for underwater net photosynthesis (PN) was not affected by 10–400 mm NaCl, but it was reduced by 30 % at 800 mm. Dark respiration, underwater, increased in succulent stems at 200–800 mm NaCl, as compared with those at 10 mm NaCl. On an ethanol-insoluble dry mass basis, K+ concentration in succulent stems of submerged plants was equal to that in drained controls, across all NaCl treatments. Na+ and Cl concentrations, however, were elevated in stems of submerged plants, but so was glycinebetaine. Submerged stems increased in succulence, so solutes would have been ‘diluted’ on a tissue-water basis.

Conclusions

Tecticornia pergranulata tolerates complete submergence, even in waters of high salinity. A ‘quiescence response’, i.e. no shoot growth, would conserve carbohydrates, but tissue sugars still declined with time. A low K+ : Na+ ratio, typical for tissues of succulent halophytes, was tolerated even during prolonged submergence, as evidenced by maintenance of underwater PN at up to 400 mm NaCl. Underwater PN provides O2 and sugars, and thus should enhance survival of submerged plants.Key words: Flooding, halophyte, Halosarcia pergranulata, inundation, inland salt marsh, respiration, Salicornioideae, salt lake, submergence–salinity interaction, tissue solutes, underwater net photosynthesis  相似文献   

14.
Salinity and nitrogen are two important environmental factors that affect the distribution of halophytes in their natural saline habitats. Seeds of the euhalophyte Suaeda salsa L. were harvested from plants that had been treated with 1 or 500 mm NaCl combined with 0.5 or 5 mm NO3?‐N (nitrate) for 115 days in a glasshouse. Germination was evaluated under different concentrations of NaCl and nitrate. Plants exposed to high salinity (500 mm ) and low nitrate (0.5 mm ) tended to produce heavy seeds. Either high salinity (500 mm ) or high nitrate (5 mm ) increased the brown/black seed ratio. The concentrations of Na+, K+, and Cl? were higher in brown than in black seeds, and NO3? concentrations were higher in black than in brown seeds, regardless of NaCl and nitrate treatments during plant culture. Regardless of NaCl and nitrate concentrations during germination, seeds from plants grown with 0.5 mm nitrate generally germinated more rapidly than seeds from plants grown with 5 mm nitrate, and the difference was greater for black than for brown seeds. Exogenous nitrate during germination enhanced the germination of brown seeds less than that of black seeds. Producing more brown seeds and heavy black or brown seeds appears to be an adaptation of S. suaeda to saline environments. Producing more black seeds, which tend to remain dormant, should reduce competition for nitrogen and appears to be an adaptation to nitrogen‐limited environments. In conclusion, nitrate provided exogenously or by mother plants to black seeds may act as a signal molecule that enhances the germination of black S. suaeda seeds.  相似文献   

15.
SUMMARY. 1. The ranges of concentrations for pH, CV. Na+. K+Ca2+, Mg2+ are given for streams draining igneous rocks (Borrowdale Volcanics) and sedimentary muds, silts and shales (Silurian Slates) in the catchment of Windermere (230 km2). Impacts on the biota are briefly discussed. Relative contributions of inputs from various sources are examined: precipitation, rocks and soils, sewage, deicing salt used on highways./ 2. In bulk precipitation, ratios of Na+/CV (as μequiv. I?1) ranged from 0.41 to 1.83 over a 2-year period. The overall volume-weighted mean ratio was 0.86, as in seawater, hut 2′4%(1975) and 5.7% (1976) of Cl? was non-marine in origin, being balanced by H + (in winter), K and Ca2+ (in summer). In moorland headwater streams, CI? is largely derived from precipitation: there is a pronounced annual cycle of midwinter high and midsummer low concentrations unrelated to stream discharge. Na* and K+ display similar cycles but Na+, Ca2+ and Mg2+ (and pH) are discharge-related due to leaching from rocks and soils: 10–20% Na+, 15–17% Mg2+ and 65–75% Ca2+ are so-derived whereas K+ comes from precipitation. Na+/Cl+ ratios in streams on Borrowdale Volcanics alter seasonally, with midsummer values >1. Lower values occur in streams on Silurian Slates where some CI? is apparently derived from rocks. 3. Seasonal changes in streamwater concentrations of Cl, Na4 andK+are exponentially related to time. Instantaneous rates of change i day-11) are compared in relation to position in the catchment and inputs from anthropogenic sources. Deicing salt has raised (10–100-fold) the concentrations of Na* and Cl? in streams on mountain passes; the effects persist throughout the year.  相似文献   

16.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

17.
Abstract The freshwater Charophyte Chora corallina dies when subjected to 70 molm?3 NaCl if the Ca2+ concentration is 0.1 mol m ?3. This stress is accompanied by a depolarization of the cell to a membrane potential more positive than EK, a net influx of Na+ into the vacuole, and a net loss of K+ from the vacuole. Raising the Ca2+ concentration to 7 mol m ?3 in the presence of elevated Na+ restores the Na+ to Ca2+ ratio to 10: 1 as in the control solution, and results in enhanced survival even though turgor is not regulated. Mg2+ is not a good substitute for Ca2+. It is suggested that the main reason that C. corallina fails to occupy saline habitats is its failure to regulate turgor, not sensitivity to Na +, since the latter is similar to that seen in C. buckellii, which is found in saline habitats.  相似文献   

18.
Prosopis farcta was grown on hydroculture with additions of 0.5, 10, 50, and 100 mM NaCl and without salt treatment. In plants from a 0.5 mM NaCl treatment, Cl? was taken up into stems and leaves, but Na+ was withheld from the shoot. At 10 mM NaCl, shoot K+ concentration was below that of the control; Na+ and Cl? were taken up to stems and cotyledons in nearly equimolar amounts. However, in the leaves, Na+ concentrations were only half of those of Cl?. With increasing salt stress, Na+ and Cl? were transported to the shoot, but kept at relatively low levels in the roots. Na+/ K+ ratios in roots did not increase proportionally to those in the solution. At an external Na+/K+ of > 5 and a root Na+/K+ of >1 (10 mM NaCl treatment), K+ selectivity was induced which rose exponentially with increasing salt stress; and cell wall protuberances were discovered in the hypodermis at the zone of side root formation. These transfer cells were found neither in roots from the 0.5 mM NaCl treatment nor in the controls. Their possible role in the Na+/K+ selectivity of the roots of Prosopis farcta is discussed.  相似文献   

19.
Based on the high sequence homology between the yeast ORF YBR296c (accession number P38361 in the SWISS-PROT database) and the PHO4 gene of Neurospora crassa, which codes for a Na+/Pi cotransporter with twelve putative transmembrane domains, the YBR296c ORF was considered to be a promising candidate gene for a plasma membrane-bound phosphate transporter in Saccharomyces cerevisiae. Therefore, this gene, here designated PHO89, was cloned and a set of deletion mutants was constructed. We then studied their Pi uptake activity under different conditions. We show here that a transport activity displayed by PHO89 strains under alkaline conditions and in the presence of Na+ is absent in pho89 null mutants. Moreover, when the pH was lowered to pH 4.5 or when Na+ was omitted, this activity decreased significantly, reaching values close to those exhibited by the Δpho89 mutant. Studies of the acid phosphatase activity of these strains, as well as promoter sequence analysis, suggest that expression of the PHO89 gene is under the control of the PHO regulatory system. Northern analysis shows that this gene is only transcribed under conditions of Pi limitation. This is, to our knowledge, the first demonstration that the PHO89 gene codes for the Na+/Pi cotransporter previously characterized by kinetic studies, and represents the only Na+-coupled secondary anion transport system so far identified in S. cerevisiae. Pho89p has been shown to have an apparent Km of 0.5 μM and a pH optimum of 9.5, and is highly specific for Na+; activation of transport is maximal at a Na+ concentration of 25 mM. Received: 2 November 1997 / Accepted: 20 February 1998  相似文献   

20.
Frozen aqueous suspensions of partially purified membrane-bound renal (Na+ + K+)-ATPase have been irradiated at –135°C with high-energy electrons. (Na+ + K+)-ATPase and K+-phosphatase activities are inactivated exponentially with apparent target sizes of 184 ± 4 kDa and 125 ± 3 kDa, respectively. These values are significantly lower then found previously from irradiation of lyophilized membranes. After reconstitution of irradiated (Na+ + K+)-ATPase into phospholipid vesicles the following transport functions have been measured and target sizes calculated from the exponential inactivation curves: ATP-dependent Na+?K+ exchange, 201 ± 4 kDa; (ATP + Pi)-activated Rb+?Rb+ exchange, 206 ± 7 kDa and ATP-independent Rb+?Rb+ exchange, 117 ± 4 kDa. The apparent size of the α-chain, judged by disappearance of Coomassie stain on SDS-gels, lies between 115 and 141 kDa. That for the β-glycoprotein, though clearly smaller, could not be estimated. We draw the following conclusions: (1) The simplest interpretation of the results is that the minimal functional unit for (Na+ + K+)-ATPase is αβ. (2) The inactivation target size for (Na+ + K+)-dependent ATP hydrolysis is the same as for ATP-dependent pumping of Na+ and K+. (3) The target sizes, for K+-phosphatase (125 kDa) and ATP-independent Rb+?Rb+ exchange (117 kDa) are indistinguishable from that of the α-chain itself, suggesting that cation binding sites and transport pathways, and the p-nitrophenyl phosphate binding site are located exclusively on the α-chain. (4) ATP-dependent activities appear to depend on the integrity of an αβ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号