首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鸡冠花植株内无机元素的分析研究   总被引:3,自引:1,他引:2  
用电感耦合等离子体发射光谱法(ICP-AES)测定了鸡冠花3个栽培品种的23种无机元素,即Al、Ba、Be、Ca、Cd、Co、Cr、Cu、Fe、K、Li、Mg、Mn、Mo、Na、Ni、P、Pb、Si、Sr、Ti、V、Zn。结果表明,不同品种及不同器官,其无机元素含量存在显著差异。总体上看,该种植物无机元素含量丰富,不同器官中以种子尤为突出,3个品种中以园绒鸡冠突出。  相似文献   

2.
A field survey was conducted to search for Pb accumulation in fern species at Bo Ngam Pb mine, Thailand. Eleven fern species including Pteris vittata accumulated Pb in the range of 23.3–295.6 mg kg?1 in the aboveground parts. Hydroponic, pot, and field trial experiments were carried out to investigate Pb-accumulation ability in ferns; including P. vittata and the ornamental species, Pityrogramma calomelanos, Nephrolepis exaltata cv. Gracillimum, and N. exaltata cv. Smirha. In hydroponic experiment, Pi. calomelanos accumulated the highest concentration of Pb (root 14161.1 mg kg?1, frond 402.7 mg kg?1). The pot study showed that P. vittata, Pi. calomelanos, and N. exaltata cv. Gracillimum grew well when grown in soil Pb at 92900 mg kg?1. N. exaltata cv. Gracillimum accumulated the highest Pb concentration in the frond (5074 mg kg?1) and P. vittata accumulated the highest Pb concentration in the root (16257.5 mg kg?1). All fern species exhibited TF values less than 1 in both hydroponic and pot experiments. When P. vittata and Pi. calomelanos were grown at mine soils for 6 months, P. vittata tolerated higher soil Pb (94584–101405 mg kg?1) and accumulated more Pb in frond (4829.6 mg kg?1) and showed TF > 1 after 2 months of growth. These results indicated that P. vittata can be potentially useful for phytoremediation of Pb-contaminated soil.  相似文献   

3.
Alfalfa plants germinated and grown for 15 d in soil containing 80 mg Pb kg?1 were treated with ethylenediaminetetraacetic acid (EDTA) at 0.8 mM and indole-3-acetic acid-kinetin (IAA-KN) at 100 μM. Fifteen days after the treatment application, the concentration of lead (Pb), macronutrients, and micronutrients was determined using inductively coupled plasma/optical emission spectroscopy. The chlorophyll content and plant growth were also measured. Roots of plants exposed to Pb alone, Pb–EDTA, and Pb–EDTA-IAA-KN had 160, 140, and 150 mg Pb kg?1 DW, respectively. Pb was not detected in the stems of plants exposed to Pb alone; however, stems of plants treated with EDTA and EDTA–IAA-KN had 78 and 142 mg Pb kg?1 DW, respectively. While the Pb concentration in leaves of plants treated with EDTA and EDTA–IAA-KN was 92 and 127 mg kg?1 DW, respectively. In addition, EDTA and EDTA–IAA-KN significantly increased the translocation of zinc and manganese to leaves. The x-ray absorption spectroscopic studies demonstrated that Pb(II) was transported from roots to leaves without a change in the oxidation state.  相似文献   

4.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

5.
Betalains of Celosia argentea   总被引:7,自引:0,他引:7  
The betalains of yellow, orange and red inflorescences of common cockscomb (Celosia argentea var. cristata) were compared and proved to be qualitatively identical to those of feathered amaranth (Celosia argentea var. plumosa). In addition to the known compounds amaranthin and betalamic acid, the structures of three yellow pigments were elucidated to be immonium conjugates of betalamic acid with dopamine, 3-methoxytyramine and (S)-tryptophan by various spectroscopic techniques and comparison to synthesized reference compounds; the latter two are new to plants. Among the betacyanins occurring in yellow inflorescences in trace amounts, the presence of 2-descarboxy-betanidin, a dopamine-derived betacyanin, has been ascertained. The detection of high dopamine concentration may be of toxicological relevance in use of yellow inflorescences as a vegetable and in traditional Chinese medicine, common uses for the red inflorescences of common cockscomb.  相似文献   

6.
Summary Six ornamental species (Petunia hybrida, Callistephus hortensis, Coleus blumei, Celosia pyramidalis, Antirrhinum majus andTagetes erecta) were grown in solutions containing high concentrations of polyethylene glycol (MW 4000) or of Nitrogen: Phosphorus: Potassium. At equal osmotic potentials, top dry weight, leaf area and leaf elongation rate were all reduced more by polyethylene glycol than by NPK. Polyethylene glycol also produced some leaf damage which did not occur with NPK solutions. Osmotic potentials of –600 kPa due to NPK reduced growth of the six species by at least 25% compared with growth of control plants (at –20 kPa). Tolerance ranking to high fertilizer in the irrigation solution increased from Snapdragon (most sensitive), Marigold Coleus, Aster, Celosia and Petunia (most tolerant).  相似文献   

7.
鸡冠花叶蛋白质营养价值的评价研究   总被引:23,自引:2,他引:23  
应用模糊识别法和氨基酸比值系数法,分别以鸡蛋蛋白南为标准蛋白,以WHO/FAO氨基酸参考模式为评价标准,对3种鸡冠花叶蛋白质营养价值进行了全面评价,并与10种常见叶菜蛋白进行对照比较。结果表明,3种鸡冠花叶(干品)蛋白质含量为23.7% ̄27.4%,蛋白质中氨基酸种类齐全,其含量为83.47% ̄86.94%,必需氨基酸(EAA)占总氨基酸量的40.2% ̄41.7%,第一限制性氨基酸为含硫氨基酸(M  相似文献   

8.
Several species of the Noccaea genus are known for their hyperaccumulation ability especially in the case of Cd, Ni, and Zn. However, ambiguous observations were previously published concerning their accumulation properties for Pb. The Pb accumulation properties of Noccaea rotundifolia, Noccaea montana, and Noccaea jankae hungarica plants were tested in field and pot experiments in soils differing in the mobile pool of Pb, as well as in soilless hydroponic culture. The Pb content in the dry biomass of plant shoots reached up to 54 mg/kg in field conditions and 84 mg/kg in pots regardless of the bioavailable pool of Pb in the pots. The hydroponic experiment showed a stepwise increase in Pb content in plant biomass with increasing Pb concentration in the solution, but the predominant proportion of plant Pb was retained in the roots. Although the hyperaccumulation ability of some of the Noccaea species is widely discussed in the literature, our results are in agreement with those suggesting no Pb hyperaccumulation potential in these plants.  相似文献   

9.
Nowadays, public concern relating to ecological deleterious effects of heavy metals is on the rise. To evaluate the potential of Rapistrum rugosum and Sinapis arvensis in lead- contaminate phytoremediate, a pot culture experiment was conducted. The pots were filled by soil treated with different rates of leadoxide (PbO) including 0 (control), 100, 200, 300, 400, and 500 mg Pb per 1 kg soil. Germinated seeds were sown. Surprisingly, with increasing concentration of Pb, dry weight of R. rugosum and S. arvensis did not decrease significantly. In both of species, the concentration of Pb was higher in roots than shoots. In general, S.arvensis was absorbed more Pb compared to R. rugosum. The results revealed high potential of R. rugosum and S. arvensis in withdrawing Pb from contaminated soil. For both species, a positive linear relation was observed between Pb concentration in soil and roots. However, linear relationship was not observed between Pb concentration in the soil and shoots. Although both species test had low ability in translocation Pb from roots to shoots but they showed high ability in uptake soil Pb by roots. Apparently, these plants are proper species for using in phytoremediation technology.  相似文献   

10.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

11.
Sonchus arvensis is one of the pioneer plant species that were found in the abandoned Bo Ngam Pb mine in Thailand. S. arvensis was collected from three sites. The highest Pb shoot concentration was 9317 mg kg?1 and the highest translocation factor (TF) and bioaccumulation factor (BF) values were 2.5 and 6.0, respectively. To investigate Pb uptake capacity of S. arvensis, a hydroponic experiment was performed for 15 d. S. arvensis exposed to 5 mg L?1 Pb solution had the highest Pb shoot accumulation (849 mg kg?1). In a pot study, S. arvensis was grown in Pb mine soils amended with organic and inorganic fertilizers for 2 mo. The addition of organic fertilizer to the soil increased plant dry biomass sharply. All treatments with ethylene-diamine-tetra-acetic acid (EDTA) had Pb accumulation in shoots greater than 1000 mg kg?1 and the highest Pb shoot accumulation was found in S. arvensis grown in soil amended with organic fertilizer and EDTA (1397 mg kg?1). In a field trial study, S. arvensis was grown at three sites in the mine area for 6 mo. S. arvensis could tolerate a total Pb of 100,000 mg kg?1 in the soil and accumulated Pb in the shoots up to 3664 mg kg?1 with high TF (2.19) and BF (2.38) values. These results suggest that S. arvensis is a good candidate for Pb phytoremediation.  相似文献   

12.
A ClpS homologue from Celosia cristata was expressed as maltose-binding fusion protein under the control of strong inducible tac promoter of pMALc2X vector in TB 1 strain of Escherichia coli. SDS-PAGE analysis showed that fused ClpS is produced as about 63 kDa protein in recombinant bacteria. Expressed product was purified to homogeneity with a yield of about 31 mg/l of bacterial culture. The results indicated that heterologous expression of Celosia ClpS does not affect bacterial growth under different induced conditions. Total cellular antioxidant assessment results revealed that the induction of ClpS activates the bacterial antioxidative system. Since, the purified ClpS did not exhibit antioxidant activity in vitro, we speculated a functional corelation between bacterial protelolytic apparatus and its anti-oxidative system. This prediction may contribute to our better understanding of functional relationship between proteolytic and antioxidative systems in biological worlds in the future investigations.  相似文献   

13.
In order to assess their practical capability for the absorption and accumulation of Pb, Zn, and Cu, five common crop plants, i.e. maize (Zea mays), sunflower (Helianthus annuus), canola (Brassica napus), barley (Hordeum vulgare) and White lupine (Lupinus albus) were tested in pot experiments using six soil samples taken from mine tailings, pasture and arable soils around an old Pb-Zn mine in Spain. Metal concentration ranges of the soils were 76.2–785 mg kg?1, 127–1652 mg kg?1, and 12.4–82.6 mg kg?1 for Zn, Pb, and Cu, respectively. With the exception of the highest polluted sample, soil total metal concentration did not influence significantly biomass yields of each crop for the different growth substrates. The order found for the total metal accumulation rate (TMAR) in the crops was Zn>>Pb > Cu, with maize reaching the highest metal concentrations. Pb root concentrations were markedly higher than those of shoots for all the crops, while Zn and Cu were translocated to shoots more efficiently. Concentrations of metals extracted by EDTA and BCR sequential extraction were well correlated, in general, with both root metal content and TMAR. CaCl2-extracted Zn was well correlated with root concentrations, TMAR and, in some cases, with shoot contents. Our study showed that the test crops were not feasible to remediate the heavily or moderately contaminated soils studied here in order to achieve the total metal soil concentrations required by the current European laws.  相似文献   

14.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

15.
Cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone, 1), known as a host-specific attractant towards the zoospores of Aphanomyces cochlioides, a cause of root rot and damping-off diseases of Chenopodiaceae, was found in the Amaranthaceae plant, Celosia cristata, that is susceptible to the pathogen. The content of 1 in Celosia seedlings was quantified as 1.4 microg/g fresh weight. A new isoflavone, cristatein (5-hydroxy-6-hydroxymethyl-7,2'-dimethoxyisoflavone, 2), and five known flavonoids were also identified.  相似文献   

16.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

17.
铅对山西省路域优势草本植物生长的影响及铅累积特征   总被引:4,自引:0,他引:4  
Bai YZ  Xie YH 《应用生态学报》2011,22(8):1987-1992
采用温室盆栽试验,研究了不同浓度铅(0、500、1000、1500mg.kg-1)对14种山西省路域优势草本植物生长的影响及其铅吸收积累特征.结果表明:在14种草本植物中,随着铅浓度的增大,反枝苋和高丹草表现出明显的中毒症状,其他12种植物的株高和生物量与对照相比均无显著降低,表现出对铅污染具有一定的耐受性;藜和新麦草植株的地上部铅含量最低,各浓度铅处理下平均值分别为12.70和11.33mg.kg-1,地上部与根的铅含量比(S/R)最低,分别为0.12和0.10,表明二者为低积累植物,可用于铅污染土壤的植被恢复;红叶苋和绿叶苋植株地上部的铅迁移量最高,1500mg.kg-1铅处理下每百株铅迁移总量分别为53.37和45.29mg,可作为修复铅污染土壤的先锋植物.  相似文献   

18.
Pot size affects expression of Mn efficiency in barley   总被引:3,自引:0,他引:3  
Mn efficiency is defined here as an ability of a genotype to grow and yield well in a soil which is limiting in available Mn for a standard genotype (Graham, 1984). Screening for Mn efficiency in soil-based pot testing had been producing inconsistent results, and thus improvement of pot screening became an objective. One possible factor, pot size was examined as the cause, using two sizes of pot. In large pots, the expectation of higher dry matter and shoot Mn concentration in a Mn-efficient genotype compared to a Mn-inefficient genotype was realised over a wide range of Mn supply, whereas in small pots, the genotypic differences were expressed at only one, low rate of Mn supply (10 mg kg soil-1). Plants in the small pots strongly responded to root restriction by decreasing yields and increasing root/shoot ratios and Mn concentrations of shoots. The critical value of Mn concentration for shoot growth was not affected by the small pots, but the Mn mobilization by plants might be affected in the small pots. The practical outcome of these results is that using an adequate size of pot and measuring the Mn concentration of shoots, soil-based pot screening for Mn efficiency can be improved.  相似文献   

19.
以柠檬香蜂草(Melissa officinalis)幼苗为材料,设置不同浓度Cu~(2+)胁迫(CK、200、400、800和1 000mg·kg~(-1))盆栽实验,测定胁迫0、7、14、21、28d后植物生物量、叶绿素含量、抗氧化酶活性、可溶性蛋白含量、丙二醛(MDA)含量以及植物体内Cu含量等指标,探讨柠檬香蜂草对Cu~(2+)的耐受性及其积累特征。结果表明:(1)相同处理时间下,柠檬香蜂草除MDA含量外其他所有指标均随着Cu~(2+)胁迫处理浓度的增加呈低浓度促进、高浓度抑制的变化趋势,且高浓度组(800和1 000mg·kg~(-1))与低浓度组(200和400mg·kg~(-1))之间差异显著(P0.05);MDA含量在1 000mg·kg~(-1)浓度下持续增长至第14天后开始下降。(2)柠檬香蜂草体内Cu的积累量随Cu胁迫浓度的升高呈先增加后减少的趋势,并在浓度为400mg·kg~(-1)时达到最高值(0.71mg/盆)。(3)在整个胁迫过程中,柠檬香蜂草植株的铜富集系数及其耐性系数均随Cu浓度的增加而减小,各处理浓度对Cu的耐性系数均大于0.5,富集系数均大于1。研究发现,柠檬香蜂草对Cu胁迫具有一定耐受性和富集能力,具有成为铜污染土壤修复植物的潜力。  相似文献   

20.
Introduction: In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials.

Methods: A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared.

Results: AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg?1) and Cd (10 mg kg?1) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control).

Conclusions: The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号