首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb(NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.  相似文献   

2.
This study assessed the potential abilities of Scirpus triqueter for phytoremediation of soils contaminated with Pb-PAHs, amended with environment-friendly surfactant alkyl polyglucoside (APG). The effects of APG on the removal of PAHs from soil and the plant uptake and translocation of Pb were tested with plant growth and soil enzymatic activities. Experiments demonstrated that APG has an ability to facilitate PAH degradation and Pb uptake in the plant body at appropriate concentrations (20–40mg L?1). The highest PAH removal rate was observed in 30 mg L?1 APG treatment, and the highest accumulation of Pb was detected as 40 mg L?1 APG. Experiments documented the effects of APG on plant growth, soil enzymatic activity, bioaccumulation and translocation of Pb in Scirpus triqueter. Results indicated that the addition of appropriate APG enhanced PAH removal rate and increased plant uptake and translocation of Pb.  相似文献   

3.
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved at initial concentration of 0.5 mg/l arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.  相似文献   

4.
This research was conducted to assess the contamination of heavy metals in the water, sediment, aquatic plants and animals around a municipal landfill. The heavy metals were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of cadmium (Cd), chromium (Cr), and lead (Pb) in water and sediment were Not detected (ND), 0.05 ± 0.98, and 0.02 ± 0.01 mg/L; and 0.47 ± 0.23, 18.65 ± 11.39, and 5.36 ± 2.08 mg/kg, respectively. A total of 24 aquatic plants from 4 species were collected from the municipal landfill. Cd concentrations in all plant species were within the standard, while Cr and Pb exceeded the standard. Forty-four fish from 4 species, 29 freshwater snails from 3 species, 10 freshwater prawns from 1 species, and 9 freshwater crabs from 1 species were collected. Cd and Cr concentrations in 2 species of fish samples exceeded the standard and Pb concentration in all fish species exceeded the standard. Cd and Pb concentrations in all freshwater snails were within the standard, except Cr. Meanwhile, Cd and Pb in freshwater prawns and snails were within the standard, except Cr. Five species of frogs were collected. Cd and Cr concentrations in 2 species exceeded the standard. Pb concentrations in all frog species exceeded the standard. The pattern of metal accumulation was fish > frogs > freshwater snails > freshwater prawns = freshwater crab (Cd), freshwater prawn > frogs > freshwater crab = freshwater snail > fish (Cr), and freshwater prawn > fish > frogs > freshwater snail > freshwater crab (Pb).  相似文献   

5.
ABSTRACT

The increase in municipal solid waste generation, along with high concentrations of heavy metals in environments near municipal landfill, has led to human health hazards. This study investigated heavy metal contamination in water, sediment, and edible plants near a municipal landfill, including the bioaccumulation factor (BAF) and potential health risks. The heavy metal concentrations in the samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr) in water samples were not detected (ND), ND, 0.006 ± 0.01 mg/L, and ND, respectively, and in sediment samples, the concentrations were 1.19 ± 0.44, 3.20 ± 0.62, 0.46 ± 0.21, and 6.97 ± 0.34 mg/kg, respectively. The highest concentrations of As (5.03 ± 0.38), Pb (1.81 ± 0.37), and Cd (1.93 ± 0.13) were found in Marsilea crenata, whereas that of Cr (5.68 ± 0.79) was detected in Ipomoea aquatica. The Cr concentration in all plant species exceeded the standard for vegetables. The BAF values followed the heavy metal concentrations. All plant species have a low potential for accumulating Pb and Cr. The edible plants in this study area might cause health hazards to consumers from As, Pb, and Cd contamination.  相似文献   

6.
The current study evaluated the effect of groundwater and wastewater irrigation on lead (Pb) accumulation in soil and vegetables, and its associated health implications. A pot experiment was conducted in which spinach (Spinacia oleracea), radish (Raphanus sativus), and cauliflower (Brassica oleracea) were irrigated with groundwater and wastewaters containing varying concentrations of Pb. Lead contents were measured in wastewaters, soils and root and shoot of vegetables. We also measured health risk index (HRI) associated with the use of vegetables irrigated by wastewaters. Results revealed that Pb contents in groundwater and wastewater samples (range: 0.18–0.31 mg/L) were below the permissible limits (0.5 mg/L) set by the Food and Agriculture Organization (FAO). Application of Pb-containing groundwater and wastewater increased Pb concentration in soil and vegetables. Lead concentrations in all soils ranged from 10 to 31 mg/kg and were below the permissible limits of 300 mg/kg set by the European Union. Significant Pb enrichment was observed in the soils whereby all types of vegetables were grown and assessed for Pb risk. Our data showed that Pb contents, in all three vegetables (21–28 mg/kg DW), were higher than the permissible Pb limit of FAO (5 mg/kg Dry Weight (DW)). The HRI values were > 1.0 for radish and cauliflower. It is proposed that Vehari city wastewater/groundwater must be treated prior to its use for irrigation to avoid vegetable contamination by Pb, and as such for reducing Pb-induced human health risk.  相似文献   

7.
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01–23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.  相似文献   

8.
The concentration of heavy metals in water, sediment, and various food-web components like plankton, shrimp, bivalve, and fishes were collected from Muthupet mangrove ecosystem. Heavy metal concentration in water samples was relatively lesser than the biological and sediment samples. Among the heavy metals studied, zinc showed highest concentration ranged from 1.81 to 81.5 mg/kg or mg/L, whereas Cd (0–26.06 mg/kg or mg/L) was found to be lesser in all the samples except a few organisms viz. Anadara sp. (26.06 mg/kg), Coilia sp. (10.09 mg/kg), Anguila sp. (9.14 mg/kg), and Tachysurus maculates (6.95 mg/kg) observed during this study. Pb and Cu were ranged from 10.29 to 14.99 mg/kg and 0.59 to 16.06 mg/kg, respectively. The reported values of heavy metals were several folds higher than permissible levels of international regulatory agencies like WHO, FAO, and USEPA. The order of accumulation of heavy metals in biological samples are as follows: Pb > Cu > Zn > Cd. All the biota showed a higher degree of bioconcentration factor for Zn, in the range of 3.90–34.39. Principal component analysis concluded that Muthupet was contaminated by lithogenic as well as anthropogenic activities.Therefore, field observation and sample analysis clearly indicated that sampling sites were polluted with both point and nonpoint source of pollution.  相似文献   

9.
Here, we used an in vitro biofilm approach to study metal resistance and/or tolerance of mixed-species biofilms grown from an oil sand tailings pond in northern Alberta, Canada. Metals can be inhibitory to microbial hydrocarbon degradation. If microorganisms are exposed to metal concentrations above their resistance levels, metabolic activities and hydrocarbon degradation can be slowed significantly, if not inhibited completely. For this reason, bioremediation strategies may be most effective if metal-resistant microorganisms are used. Viability was measured after exposure to a range of concentrations of ions of Cu, Ag, Pb, Ni, Zn, V, Cr, and Sr. Mixed-species biofilms were found to be extremely metal resistant; up to 20 mg/L of Pb, 16 mg/L of Zn, 1,000 mg/L of Sr, and 3.2 mg/L of Ni. Metal mineralization was observed by visualization with scanning electron microscopy with metal crystals of Cu, Ag, Pb, and Sr exuding from the biofilms. Following metal exposure, the mixed-species biofilms were analyzed by molecular methods and were found to maintain high levels of species complexity. A single species isolated from the community (Rhodococcus erythropolis) was used as a comparison against the mixed-community biofilm and was seen to be much less tolerant to metal stress than the community and did not biomineralize the metals.  相似文献   

10.
The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg?1oilcake manure + 5 mmol kg?1 EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg?1and lead accumulation up to 16.11, 13.44 and 3.17 mg kg?1, respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR = 0.676%) and Pb (RR = 0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg?1oilcake manure +2 g kg?1 humic acid]. Applied EDDS altered chlorophyll–a, chlorophyll–b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73–8.65%, 5.81–17.65%, and 7.04–17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.  相似文献   

11.
In selected urban parks of the Silesian agglomeration, samples of soil, sand and dust were collected and analyzed for Zn, Pb and Fe contents.The highest soil concentrations of the metals were found in park no. I (Ko?ciuszki) in Katowice (average concentrations 244, 341 and 9375 mg/kg, respectively) and slightly lower soil concentrations were found in the park no. III (Silesian) in Chorzów (131, 211 and 9017 mg/kg, respectively). Lower contents of Zn (average 38 mg/kg) as well as Pb (71 mg/kg) and Fe (3226 mg/kg) characterize the soils of park no. II in Katowice. Concentrations of the metals in sands are on average, significantly lower, equivalent to two to three times, than those of the soil samples. The contents of metals in dusts are more variable than in soils and sands. While comparing the amount of Pb in the dust to their concentration in soils, it must be noted that for the majority of the samples they are lower. They account for 76% of the total concentration in the soil. The calculated quotient hazards of health clearly indicate a potential health risk caused by Pb, especially for young children due to their low weight. The highest health risk was established for park no. I, slightly lower for park no. III and the lowest for park no. II.  相似文献   

12.
Elevated temperature and water deficit are the major abiotic factors restricting plant growth. While in nature these two stresses often occur at the same time; little is known about their combined effect on plants. Therefore, the main objective of the current study was to observe the effect of these two stresses on phenology, dry matter and seed yield in soybean. Two soybean genotypes JS 97-52 and EC 538828 were grown under green-house conditions which were maintained at different day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively. At each temperature, pots were divided into three sets, one set was unstressed while second and third set were subjected to water stress at vegetative and reproductive stage, respectively. As compared to 30/22 °C increase in temperature to 34/24 °C caused a marginal decline in leaf area, seed weight, total biomass, pods/pl, seeds/pl, harvest index, seeds/pod and 100 seed weight. The decline was of higher magnitude at 38/26 and 42/28 °C. Water stress imposed at two growth stages also significantly affected dry matter and yield. The highest average seed yield (10.9 g/pl) was observed at 30/22 °C, which was significantly reduced by 19, 42 and 64% at 34/24, 38/24 and 42/28 °C, respectively. Similarly, compared to unstressed plants (11.3 g/pl) there was 28 and 74% reduction in yield in plants stressed at vegetative and reproductive stage. Thus, both temperature and water stress affected the growth and yield but the effect was more severe when water stress was imposed at higher temperatures. JS 97-52 was more affected by temperature and water stress as compared to EC 538828. Though drought is the only abiotic factor that is known to affect the water status of plants, but the severity of the effect is highly dependent on prevailing temperature.  相似文献   

13.
The fermentative production of biosurfactants by five Bacillus strains in a bench-scale bioreactor and evaluation of biosurfactant-based enhanced oil recovery using sand pack columns were investigated. Adjusting the initial dissolved oxygen to 100% saturation, without any further control and with collection of foam and recycling of biomass, gave higher biosurfactant production. The microorganisms were able to produce biosurfactants, thus reducing the surface tension and interfacial tension to 28 mN/m and 5.8–0.5 mN/m, respectively, in less than 10 hours. The crude surfactant concentration of 0.08–1.1 g/L, and critical micelle concentration (CMC) values of 19.4–39 mg/L, corresponding to the biosurfactants produced by the different Bacillus strains, were observed. The efficiency of crude biosurfactant preparation obtained from Bacillus strains for enhanced oil recovery, by sand pack column studies, revealed it to vary from 30.22–34.19% of the water flood residual oil saturation. The results are indicative of the potential of the strains for the development of ex-situ, microbial-enhanced, oil recovery processes.  相似文献   

14.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

15.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

16.
The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and 32P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg?1 substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg?1) shoot dry weight than non-colonized controls (26.5 mg Pb kg?1) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg?1 root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.  相似文献   

17.
Cassava mosaic disease is caused by cassava mosaic begomoviruses (CMBs) and can result in crop losses up to 100% in cassava (Manihot esculenta) in Tanzania. We investigated the efficacy of chemotherapy and thermotherapy for elimination of East African cassava mosaic virus (EACMV) of Tanzanian cassava. In vitro plantlets from EACMV‐infected plants obtained from coastal Tanzania were established in the greenhouse. Leaves were sampled from the plants and tested to confirm the presence of EACMV. Plantlets of plants positive for EACMV were initiated in Murashige and Skoog (MS) medium. On the second subculture, they were subjected into chemical treatment in the medium containing salicylic acid (0, 10, 20, 30 and 40 mg/L) and ribavirin (0, 5, 10, 15 and 20 mg/L). In the second experiment, EACMV‐infected plantlets were subjected to temperatures between 35 and 40°C with 28°C as the control. After 42 days of growth, DNA was extracted from plant leaves and PCR amplification was performed using EACMV specific primers. It was found that plant survival decreased with increasing levels of both salicylic acid and ribavirin concentrations. In general, plants treated with salicylic acid exhibited a lower plant survival % than those treated with ribavirin. However, the percentage of virus‐free plants increased with an increase in the concentration of both ribavirin and salicylic acid. The most effective concentrations were 20 mg/L of ribavirin and 30 mg/L of salicylic acid; these resulted in 85.0% and 88.9% virus‐free plantlets, respectively. With regard to thermotherapy, 35°C resulted in 79.5% virus‐free plantlets compared to 69.5% at 40°C. Based on virus elimination, ribavirin at 20 mg/L, salicylic acid 30 mg/L and thermotherapy at 35°C are recommended for production of EACMV free cassava plantlets from infected cassava landraces.  相似文献   

18.
Batticaloa Lagoon (Sri Lanka) is subjected to significant pollution as a result of anticipated unplanned development works since the cessation of a civil war in May, 2009. This paper presents the effectiveness of Avicennia marina(Forsk.) Vierh in the phytoremediation of Pb and the variation of Pb in sediments and water in the intertidal zone under drier weather conditions. Four pristine areas and 4 mangroves cut areas within the Manmunai North Divisional Secretariat Division / Batticaloa Municipal Council areas were investigated. Pb levels in the sediments and plants were negligible at all locations (i.e., below the method detection limit of the AAS for sediments and plants which is 0.25 mg/kg dry weight and 0.5 mg/kg dry weight, respectively). However, the water environment showed significant contamination (0.17–0.29 mg/L and 0.26–0.34 mg/L in pristine areas and cleared areas, respectively), hence Pb bioaccumulation is likely in fish and other biota. Avicennia marina is not effective to phytoremediate Pb under significant saline conditions.  相似文献   

19.
The present study investigates the possible role of exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP), on increasing phytoextraction and phytoremediation ability of arsenic hyperaccumulator, Isatis cappadocica. Arsenate (500, 1000 and 1500 µM) alone or in combination with 200 µM SNP was given to hydroponically grown plants for 14 days. The highest level of arsenate (1500 µM) reduced the plant growth and chlorophyll content, while SNP alleviated these inhibitory effects. The application of SNP significantly increased the As concentration in the root (from 1004 to 1943 mg/kg) and shoots (from 1304 to 1859 mg/kg) compared with As-stressed plants. However, SNP treatment did not affect translocation factor value significantly in the As-stressed plants which shows enhancement of both As uptake and translocation under SNP application. This is the first study demonstrating the favorable effects of SNP on As tolerance, uptake, and accumulation of highly valuable As hyperaccumulator, I. cappadocica.  相似文献   

20.
Analyses on biological activities of Gnetum gnemon were done to determine the total phenolic and antioxidants of the plant. Four parts of G. gnemon were used in this study, which were leaf, bark, twig, and seeds of the plant. All parts were extracted in methanol, ethanol, hexane, chloroform and hot water using reflux. The total phenolic content of the plant extracts were determined by using Folin-Ciocalteu method. The results demonstrated that the bark from hot water extract showed the highest total phenolic at 10.71?±?0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15?±?0.01 mg GAE/ FDW. The antioxidant activity of the plant extracts were determined by using DPPH and FRAP assays, respectively. The DPPH results showed that all plant extracts demonstrated weak free radical scavenging activity tested at the final concentration of 300 μg/ml. In contrast, the methanolic twig extract showed strong reducing power activity (FRAP) at 83.55?±?1.05%, while the hot water seed extract showed the least activity at 41.86?±?4.22% tested at the final concentration of 300 μg/ml. However, there were no correlation between total phenolics and both antioxidant assays tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号