共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate transfer from the chaperone Hsp70 to Hsp90 总被引:5,自引:0,他引:5
Wegele H Wandinger SK Schmid AB Reinstein J Buchner J 《Journal of molecular biology》2006,356(3):802-811
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1. 相似文献
2.
Hsp110 is a nucleotide-activated exchange factor for Hsp70 总被引:1,自引:0,他引:1
Andréasson C Fiaux J Rampelt H Mayer MP Bukau B 《The Journal of biological chemistry》2008,283(14):8877-8884
Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function. 相似文献
3.
Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor 总被引:1,自引:0,他引:1
The Hsp110 proteins, exclusively found in the eukaryotic cytosol, have significant sequence homology to the Hsp70 molecular chaperone superfamily. Despite this homology and the cellular abundance of these proteins, the precise functional role has remained undefined. Here, we present the intriguing finding that the yeast homologue, Sse1p, acts as an efficient nucleotide exchange factor (NEF) for both yeast cytosolic Hsp70s, Ssa1p and Ssb1p. The mechanism involves formation of a stable nucleotide-sensitive complex, but does not require ATP hydrolysis by Sse1p. The NEF activity of Sse1p stimulates in vitro Ssa1p-mediated refolding of thermally denatured luciferase, and appears to have an essential role in vivo. Overexpression of the only other described cytosolic NEF, Fes1p, can partially compensate for a lethal sse1,2Delta phenotype, however, the cells are sensitive to stress conditions. Furthermore, in the absence of Sse, the in vivo refolding of thermally denatured model proteins is affected. This is the first report of a nucleotide exchange activity for the Hsp110 class of proteins, and provides a key piece in the puzzle of the cellular chaperone network. 相似文献
4.
5.
Heat shock proteins (Hsps) were originally identified as proteins expressed after exposure of cells to environmental stress. Several Hsps were subsequently shown to play roles as molecular chaperones in normal intracellular protein folding and targeting events and to be expressed during discrete periods in the development of several embryonic tissues. However, only recently have studies begun to address the specific developmental consequences of inhibiting Hsp expression to determine whether these molecular chaperones are required for specific developmental events. We have previously shown that the heat-inducible zebrafish hsp70 gene is expressed during a distinct temporal window of embryonic lens formation at normal growth temperatures. In addition, a 1.5-kb fragment of the zebrafish hsp70 gene promoter is sufficient to direct expression of a gfp reporter gene to the lens, suggesting that the hsp70 gene is expressed as part of the normal lens development program. Here, we used microinjection of morpholino-modified antisense oligonucleotides (MOs) to reduce Hsp70 levels during zebrafish development and to show that Hsp70 is required for normal lens formation. Hsp70-MO-injected embryos exhibited a small-eye phenotype relative to wild-type and control-injected animals, with the phenotype discernable during the second day of development. Histological and immunological analysis revealed a small, underdeveloped lens. Numerous terminal deoxynucleotidyl transferase-mediated dUTP-fluoroscein nick-end labeling (TUNEL)-positive nuclei appeared in the lens of small-eye embryos after 48 hours postfertilization (hpf), whereas they were no longer apparent in untreated embryos by this age. Lenses transplanted from hsp70-MO-injected embryos into wild-type hosts failed to recover and retained the immature morphology characteristic of the small-eye phenotype, indicating that the lens phenotype is lens autonomous. Our data suggest that the lens defect in hsp70-MO-injected embryos is predominantly at the level of postmitotic lens fiber differentiation, a result supported by the appearance of mature lens organization in these embryos by 5 days postfertilization, once morpholino degradation or dilution has occurred. 相似文献
6.
Jeannette Juretschke Ruth Menssen Dieter H. Wolf 《Biochemical and biophysical research communications》2010,397(3):447-3861
Fructose-1,6-bisphosphatase (FBPase) is a key regulatory enzyme of gluconeogenesis. In the yeast Saccharomyces cerevisiae, it is only expressed when cells are grown in medium with nonfermentable carbon sources. Addition of glucose to cells leads to inactivation of FBPase and degradation via the ubiquitin-proteasome system. Polyubiquitination of FBPase is carried out by the Gid complex, a multi-subunit ubiquitin ligase. Using tandem affinity purification and subsequent mass spectrometry we identified the Hsp70 chaperone Ssa1 as a novel interaction partner of FBPase. Studies with the temperature-sensitive mutant ssa1-45ts showed that Ssa1 is essential for polyubiquitination of FBPase by the Gid complex. Moreover, we show that degradation of an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is also affected in ssa1-45ts cells demonstrating that Ssa1 plays a general role in elimination of gluconeogenic enzymes. 相似文献
7.
8.
Katerina Naka K Patra Vezyraki Alexandros Kalaitzakis Stelios Zerikiotis Lampros Michalis Charalampos Angelidis 《Cell stress & chaperones》2014,19(6):853-864
The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism. 相似文献
9.
HspBP1, an Hsp70 cochaperone,has two structural domains and is capable of altering the conformation of the Hsp70 ATPase domain 总被引:3,自引:0,他引:3
We present here the first structural information for HspBP1, an Hsp70 cochaperone. Using circular dichroism, HspBP1 was determined to be 35% helical. Although HspBP1 is encoded by seven exons, limited proteolysis shows that it has only two structural domains. Domain I, amino acids 1-83, is largely unstructured. Domain II, amino acids 84-359, is predicted to be 43% helical using circular dichroism. Using limited proteolysis we have also shown that HspBP1 association changes the conformation of the ATPase domain of Hsp70. Only domain II of HspBP1 is required to bring about this conformational change. Truncation mutants of HspBP1 were tested for their ability to inhibit the renaturation of luciferase and bind to Hsp70 in reticulocyte lysate. A carboxyl terminal truncation mutant that was slightly longer than domain I was inactive in these assays, but domain II was sufficient to perform both functions. Domain II was less active than full-length HspBP1 in these assays, and addition of amino acids from domain I improved both functions. These studies show that HspBP1 domain II can bind Hsp70, change the conformation of the ATPase domain, and inhibit Hsp70-associated protein folding. 相似文献
10.
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway. 相似文献
11.
Dutkiewicz R Schilke B Cheng S Knieszner H Craig EA Marszalek J 《The Journal of biological chemistry》2004,279(28):29167-29174
Isu, the scaffold for assembly of Fe-S clusters in the yeast mitochondrial matrix, is a substrate protein for the Hsp70 Ssq1 and the J-protein Jac1 in vitro. As expected for an Hsp70-substrate interaction, the formation of a stable complex between Isu and Ssq1 requires Jac1 in the presence of ATP. Here we report that a conserved tripeptide, PVK, of Isu is critical for interaction with Ssq1 because amino acid substitutions in this tripeptide inhibit both the formation of the Isu-Ssq1 complex and the ability of Isu to stimulate the ATPase activity of Ssq1. These biochemical defects correlate well with the growth defects of cells expressing mutant Isu proteins. We conclude that the Ssq1-Isu substrate interaction is critical for Fe-S cluster biogenesis in vivo. The ability of Jac1 and mutant Isu proteins to cooperatively stimulate the ATPase activity of Ssq1 was also measured. Increasing the concentration of Jac1 and mutant Isu together but not individually partially overcame the effect of the reduced affinity of the Isu mutant proteins for Ssq1. These results, along with the observation that overexpression of Jac1 was able to suppress the growth defect of an ISU mutant, support the hypothesis that Isu is "targeted" to Ssq1 by Jac1, with a preformed Jac1-Isu complex interacting with Ssq1. 相似文献
12.
The Hsp60 and Hsp70 chaperones contain a number of conserved inserts that are restricted to particular phyla of bacteria.
A one aa insert in the E. coli GroEL and a 21–23 insert in the DnaK proteins are specific for most Gram-negative bacteria. Two other inserts in DnaK are
limited to certain groups of proteobacteria. The requirement of these inserts for cellular growth was examined by carrying
out complementation studies with temperature-sensitive (T
s) mutants of E. coli
groEL or dnaK. Our results demonstrate that deletion or most changes in these inserts completely abolished the complementation ability
of the mutant proteins. Studies with GroEL and DnaK from some other species that either lacked or contained these inserts
also indicated that these inserts are essential for growth of E. coli. The DnaK from some bacteria contains a two aa insert that is not found in E. coli. Introduction of this insert into the E. coli DnaK also led to its inactivation, indicating that these inserts are specific for different groups. We postulate that these
conserved inserts that are localized in loop regions on protein surfaces, are involved in some ancillary functions that are
essential for the groups of bacteria where they are found.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
13.
Yeast hexokinase is rapidly inactivated by 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate and nitrotyrosyl ethyl ester. Sugar substrates afford a partial protection, which is increased by the addition of ADP. Inactivation of the enzyme takes place concomitantly with the incorporation of 1 mol of nitrotyrosine per mol of 50 000-dalton subunit. Exhaustive proteolytic digestion of the modified protein and isolation of the nitrotyrosyl peptide by affinity chromatography, followed by electrophoresis, lead to the identification of the modified residue as a glutamyl residue. This modification of hexokinase occurs without gross conformational changes. The enzyme still binds its substrates, though binding of the nucleotides is perturbed. While the substrates afford a partial protection, they increase the incorporation of nitrotyrosine ethyl ester into the enzyme. This may be attributed to local conformational changes which their binding induces. It is concluded that a glutamyl residue is essential for yeast hexokinase activity and its catalytic function is discussed. 相似文献
14.
Treatment of bovine milk gamma-glutamyltransferase with 2,3-butanedione in borate buffer markedly inactivates its gamma-glutamyltransferase activity. Inactivation is prevented by a combination of the gamma-glutamyl donor and acceptor substrates, glutathione, and glycylglycine, but less effectively by only one of them. Serine plus borate of maleate provides no protection against the inactivation. Amino acid analysis of the enzyme treated with butanedione in the presence and absence of the protecting substrate combination indicates that complete inactivation correlates with the modification of a single arginyl residue per molecule. The residue modified is associated with the smaller subunit of the two equal subunits which comprise the enzyme. The butanedione-treated enzyme retains a hydrolytic activity, another but less significant catalytic function of the enzyme. The results indicate that the arginyl residue is involved in recognizing the anionic moiety of the acceptor and in binding it to the acceptor site located on the smaller subunit of the enzyme. 相似文献
15.
Shomura Y Dragovic Z Chang HC Tzvetkov N Young JC Brodsky JL Guerriero V Hartl FU Bracher A 《Molecular cell》2005,17(3):367-379
HspBP1 belongs to a family of eukaryotic proteins recently identified as nucleotide exchange factors for Hsp70. We show that the S. cerevisiae ortholog of HspBP1, Fes1p, is required for efficient protein folding in the cytosol at 37 degrees C. The crystal structure of HspBP1, alone and complexed with part of the Hsp70 ATPase domain, reveals a mechanism for its function distinct from that of BAG-1 or GrpE, previously characterized nucleotide exchange factors of Hsp70. HspBP1 has a curved, all alpha-helical fold containing four armadillo-like repeats unlike the other nucleotide exchange factors. The concave face of HspBP1 embraces lobe II of the ATPase domain, and a steric conflict displaces lobe I, reducing the affinity for nucleotide. In contrast, BAG-1 and GrpE trigger a conserved conformational change in lobe II of the ATPase domain. Thus, nucleotide exchange on eukaryotic Hsp70 occurs through two distinct mechanisms. 相似文献
16.
Céline Guinez Nathalie Martin Jean-Claude Michalski Tony Lefebvre 《Biochemical and biophysical research communications》2010,400(4):537-542
The members of the 70 kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family. 相似文献
17.
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels. In contrast, Hsp90 function was primarily necessary to express the FFLux-encoding gene from an inducible promoter. Together, these data indicate previously unknown roles for these proteins and point to the complexity with which chaperones and cochaperones function in the cell. 相似文献
18.
Cavazza C Martin L Laffly E Lebrette H Cherrier MV Zeppieri L Richaud P Carrière M Fontecilla-Camps JC 《FEBS letters》2011,585(4):711-715
Escherichia coli require nickel for the synthesis of [NiFe] hydrogenases under anaerobic growth conditions. Nickel import depends on the specific ABC-transporter NikABCDE encoded by the nik operon, which deletion causes the complete abolition of hydrogenase activity. We have previously postulated that the periplasmic binding protein NikA binds a natural metallophore containing three carboxylate functions that coordinate a Ni(II) ion, the fourth ligand being His416, the only direct metal-protein contact, completing a square-planar coordination for the metal. The crystal structure of the H416I mutant showed no electron density corresponding to a metal-chelator complex. In vivo experiments indicate that the mutation causes a significant decrease in nickel uptake and hydrogenase activity. These results confirm the essential role of His416 in nickel transport by NikA. 相似文献
19.
Grad I McKee TA Ludwig SM Hoyle GW Ruiz P Wurst W Floss T Miller CA Picard D 《Molecular and cellular biology》2006,26(23):8976-8983
The functions of molecular chaperones have been extensively investigated biochemically in vitro and genetically in bacteria and yeast. We have embarked on a functional genomic analysis of the Hsp90 chaperone machine in the mouse by disrupting the p23 gene using a gene trap approach. p23 is an Hsp90 cochaperone that is thought to stabilize Hsp90-substrate complexes and, independently, to act as the cytosolic prostaglandin E2 synthase. Gene deletions in budding and fission yeasts and knock-down experiments with the worm have not revealed any clear in vivo requirements for p23. We find that p23 is not essential for overall prenatal development and morphogenesis of the mouse, which parallels the observation that it is dispensable for proliferation in yeast. In contrast, p23 is absolutely necessary for perinatal survival. Apart from an incompletely formed skin barrier, the lungs of p23 null embryos display underdeveloped airspaces and substantially reduced expression of surfactant genes. Correlating with the known function of glucocorticoids in promoting lung maturation and the role of p23 in the assembly of a hormone-responsive glucocorticoid receptor-Hsp90 complex, p23 null fibroblast cells have a defective glucocorticoid response. Thus, p23 contributes a nonredundant, temporally restricted, and tissue-specific function during mouse development. 相似文献
20.
Bernhard Sielaff 《Journal of molecular biology》2010,402(1):30-556
Yeast Hsp104 is a ring-forming ATP-dependent protein disaggregase that, together with the cognate Hsp70 chaperone system, has the remarkable ability to rescue stress-damaged proteins from a previously aggregated state. Both upstream and downstream functions for the Hsp70 system have been reported, but it remains unclear how Hsp70/Hsp40 is coupled to Hsp104 protein remodeling activity.Hsp104 is a multidomain protein that possesses an N-terminal domain, an M-domain, and two tandem AAA+ domains. The M-domain forms an 85-Å long coiled coil and is a hallmark of the Hsp104 chaperone family. While the three-dimensional structure of Hsp104 has been determined, the function of the M-domain is unclear. Here, we demonstrate that the M-domain is essential for protein disaggregation, but dispensable for Hsp104 ATPase- and substrate-translocating activities. Remarkably, replacing the Hsp104 M-domain with that of bacterial ClpB, and vice versa, switches species specificity so that our chimeras now cooperate with the noncognate Hsp70/DnaK chaperone system. Our results demonstrate that the M-domain controls Hsp104 protein remodeling activities in an Hsp70/Hsp40-dependent manner, which is required to unleash Hsp104 protein disaggregating activity. 相似文献