首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Drosophila Neuroglian (Nrg) and its vertebrate homolog L1-CAM are cell-adhesion molecules (CAM) that have been well studied in early developmental processes. Mutations in the human gene result in a broad spectrum of phenotypes (the CRASH-syndrome) that include devastating neurological disorders such as spasticity and mental retardation. Although the role of L1-CAMs in neurite extension and axon pathfinding has been extensively studied, much less is known about their role in synapse formation. RESULTS: We found that a single extracellular missense mutation in nrg(849) mutants disrupted the physiological function of a central synapse in Drosophila. The identified giant neuron in nrg(849) mutants made a synaptic terminal on the appropriate target, but ultrastructural analysis revealed in the synaptic terminal a dramatic microtubule reduction, which was likely to be the cause for disrupted active zones. Our results reveal that tyrosine phosphorylation of the intracellular ankyrin binding motif was reduced in mutants, and cell-autonomous rescue experiments demonstrated the indispensability of this tyrosine in giant-synapse formation. We also show that this function in giant-synapse formation was conserved in human L1-CAM but neither in human L1-CAM with a pathological missense mutation nor in two isoforms of the paralogs NrCAM and Neurofascin. CONCLUSIONS: We conclude that Nrg has a function in synapse formation by organizing microtubules in the synaptic terminal. This novel synaptic function is conserved in human L1-CAM but is not common to all L1-type proteins. Finally, our findings suggest that some aspects of L1-CAM-related neurological disorders in humans may result from a disruption in synapse formation rather than in axon pathfinding.  相似文献   

2.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

3.
L1-type cell adhesion molecules (CAMs) are important mediators of neural differentiation, including axonal outgrowth and pathfinding and also of synapse formation and maintenance. In addition, their interactions with cytoskeletal components are highly conserved and regulated. How these different aspects of CAM functionality relate to each other is not well understood. Based on results from our and other laboratories we propose that ankyrin-binding to L1-type CAMs provides a master switch. The interaction with ankyrins directs L1-type adhesive proteins into different functional contexts, either ankyrin-independent functions, such as neurite outgrowth and axonal pathfinding or into ankyrin-dependent functions, such as L1’s role at axon initial segments (AIS), paranodal regions, synapses and in dendrites. The content of this Mini review was first presented in a shortened form at the 12th Mejbaum-Katzenellenbogen Seminar “Membrane Skeleton. Recent Advances and Future Research Directions”, June 15–18, 2008, Zakopane, Poland  相似文献   

4.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence, or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.  相似文献   

5.
The L1-family of cell adhesion molecules is involved in many important aspects of nervous system development. Mutations in the human L1-CAM gene cause a complicated array of neurological phenotypes; however, the molecular basis of these effects cannot be explained by a simple loss of adhesive function. Human L1-CAM and its Drosophila homolog neuroglian are rather divergent in sequence, with the highest degree of amino acid sequence conservation between segments of their cytoplasmic domains. In an attempt to elucidate the fundamental functions shared between these distantly related members of the L1-family, we demonstrate here that the extracellular domains of mammalian L1-CAMs and Drosophila neuroglian are both able to induce the aggregation of transfected Drosophila S2 cells in vitro. To a limited degree they even interact with each other in cell adhesion and neurite outgrowth assays. The cytoplasmic domains of human L1-CAM and neuroglian are both able to interact with the Drosophila homolog of the cytoskeletal linker protein ankyrin. Moreover the recruitment of ankyrin to cell-cell contacts is completely dependent on L1-mediated cell adhesion. These findings support a model of L1 function in which the phenotypes of human L1-CAM mutations result from a disruption of the link between the extracellular environment and the neuronal cytoskeleton.  相似文献   

6.
Grb2-assosiated binder (Gab) family proteins are docking molecules that can interact with receptor tyrosine kinases (RTKs) and cytokine receptors and bind several downstream signalling proteins. Studies in several cell types have shown that Gab1 may have a role in signalling mediated by the two RTKs epidermal growth factor (EGF) receptor (EGFR) and Met, the receptor for hepatocyte growth factor (HGF), but the involvement of Gab1 in EGFR and Met signalling has not been directly compared in the same cell. We have studied mechanisms of activation and role in mitogenic signalling of Gab1 in response to EGF and HGF in cultured rat hepatocytes. Gab1, but not Gab2, was expressed in the hepatocytes and was phosphorylated upon stimulation with EGF or HGF. Depletion of Gab1, using siRNA, decreased the ERK and Akt activation, cyclin D1 expression, and DNA synthesis in response to both EGF and HGF. Studies of mechanisms of recruitment to the receptors showed that HGF induced co-precipitation of Gab1 and Met while EGF induced binding of Gab1 to Grb2 but not to EGFR. Gab1 activation in response to both EGF and HGF was dependent on PI3K. While EGF activated Gab1 and Shc equally, within the same concentration range, HGF very potently and almost exclusively activated Gab1, having only a minimal effect on Shc. Collectively, our results strongly suggest that although Gab1 interacts differently with EGFR and Met, it is involved in mitogenic signalling mediated by both these growth factor receptors in hepatocytes.  相似文献   

7.
《The Journal of cell biology》1994,124(6):1029-1037
We have used monolayers of parental 3T3 cells and 3T3 cells expressing one of three transfected cell adhesion molecules (CAMs) (NCAM, N- cadherin, and L1) as a culture substrate for rat cerebellar neurons. A number of tyrosine kinase inhibitors have been tested for their ability to inhibit neurite outgrowth over parental 3T3 monolayers which we show to be partly dependent on neuronal integrin receptor function, as compared with neurite outgrowth stimulated by the above three CAMs. Whereas genistein (100 microM), lavendustin A (20 microM), and tyrphostins 34 and 47 (both at 150 microM) had no effect on integrin dependent or CAM stimulated neurite outgrowth, the erbstatin analogue (10-15 micrograms/ml) and tyrphostins 23 and 25 (both at 150 microM) specifically inhibited the response stimulated by all three CAMs. CAM stimulated neurite outgrowth can be accounted for by a G-protein- dependent activation of neuronal calcium channels; experiments with agents that directly activate this pathway localized the erbstatin analogue site of action upstream of the G-protein and calcium channels, whereas tyrphostins have sites of action downstream from calcium channel activation. These data suggest that activation of an erbstatin sensitive tyrosine kinase is an important step upstream of calcium channel activation in the second messenger pathway underlying the neurite outgrowth response stimulated by a variety of CAMs, and that this kinase is not required for integrin-dependent neurite outgrowth.  相似文献   

8.
《Biophysical journal》2022,121(10):1897-1908
Cells sense a variety of extracellular growth factors and signaling molecules through numerous distinct receptor tyrosine kinases (RTKs) on the cell surface. In many cases, the same intracellular signaling molecules interact with more than one type of RTK. How signals from different RTKs retain the identity of the triggering receptor and how (or if) different receptors may synergize or compete remain largely unknown. Here we utilize an experimental strategy, combining microscale patterning and single-molecule imaging, to measure the competition between ephrin-A1:EphA2 and epidermal growth factor (EGF):EGF receptor (EGFR) ligand-receptor complexes for the shared downstream signaling molecules, Grb2 and SOS. The results reveal a distinct hierarchy, in which newly formed EGF:EGFR complexes outcompete ephrin-A1:EphA2 for Grb2 and SOS, revealing a type of negative crosstalk interaction fundamentally controlled by chemical mass action and protein copy number limitations.  相似文献   

9.
Interactions between Eph receptor tyrosine kinases (RTKs) and membrane-anchored ephrin ligands critically regulate axon pathfinding and development of the cardiovascular system, as well as migration of neural cells. Similar to other RTKs, ligand-activated Eph kinases recruit multiple signalling and adaptor proteins, several of which are involved in growth regulation. However, in contrast to other RTKs, activation of Eph receptors fails to promote cell proliferation or to transform rodent fibroblasts, indicating that Eph kinases may initiate signalling pathways that are distinct from those transmitted by other RTKs. Here we show that stimulation of endogenous EphA kinases with ephrin-A1 potently inhibits the Ras/MAPK cascade in a range of cell types, and attenuates activation of mitogen-activated protein kinase (MAPK) by receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). In prostatic epithelial cells and endothelial cells, but not fibroblasts, treatment with ephrin-A1 inhibits cell proliferation. Our results identify EphA kinases as negative regulators of the Ras/MAPK pathway that exert anti-mitogenic functions in a cell-type-specific manner.  相似文献   

10.
Neural cell-adhesion molecules (CAMs) are powerful initiators of neurite outgrowth during neural differentiation. In addition, their interactions with cytoskeletal components are often conserved and highly regulated. How these two aspects of neural CAM function relate to each other is not well understood. However, a recent publication from the Felsenfeld laboratory ( http://www.mssm.edu/labs/felsenfeld) fills a gap in our knowledge of how the interaction of L1-type CAMs with the membrane skeleton adaptor protein ankyrin is severed by phosphorylation and suggests a feedback mechanism whereby the neurite-stimulating activity of L1-CAM is inversely connected to its cytoskeleton binding.  相似文献   

11.
The mechanisms by which receptor tyrosine kinases (RTKs) utilize intracellular signaling pathways to direct gene expression and cellular response remain unclear. A current question is whether different RTKs within a single cell target similar or different sets of genes. In this study we have used the ErbB receptor network to explore the relationship between RTK activation and gene expression. We profiled growth factor-stimulated signaling pathway usage and broad gene expression patterns in two human mammary tumor cell lines expressing different complements of ErbB receptors. Although the growth factors epidermal growth factor (EGF) and neuregulin (NRG) 1 similarly stimulated Erk1/2 in MDA-MB-361 cells, EGF acting through an EGF receptor/ErbB2 heterodimer preferentially stimulated protein kinase C, and NRG1beta acting through an ErbB2/ErbB3 heterodimer preferentially stimulated Akt. The two growth factors regulated partially overlapping yet distinct sets of genes in these cells. In MDA-MB-453 cells, NRG1beta acting through an ErbB2/ErbB3 heterodimer stimulated prolonged signaling of all pathways examined relative to NRG2beta acting through the same heterodimeric receptor species. Surprisingly, NRG1beta and NRG2beta also regulated partially overlapping but distinct sets of genes in these cells. These results demonstrate that the activation of different RTKs, or activation of the same RTKs with different ligands, can lead to distinct profiles of gene regulation within a single cell type. Our observations also suggest that the identity and kinetics of signaling pathway usage by RTKs may play a role in the selection of regulated genes.  相似文献   

12.
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.  相似文献   

13.
Lateral interaction is an important feature of various types of cell surface receptors including the receptor tyrosine kinases (RTKs). Here we report that dynamic lateral interaction produces amplification and variation in signalling of the EGF receptor, a member of RTKs. Binding of EGF is known to induce transphosphorylation inside EGFR dimers. Using single-molecule techniques, the relationship between EGF binding and EGFR phosphorylation has been determined. The number of phosphorylated EGFR molecules became larger than that of EGF binding as unliganded EGFR was phosphorylated, meaning an amplification of EGF signalling. EGFR formed clusters continuously exchanging their elements through thermal diffusion, and direct and/or indirect lateral interactions. As a result, various types of activation sites differing in number of activated receptors were generated. Amplification required no cytoplasmic factors and was observed on semi-intact cells for a wide range of number of EGFR molecules (10(4)-10(6) per cell) suggesting generality of this process.  相似文献   

14.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

15.
Regulatory interactions among individual receptor-coupled signal transduction systems are critically important for establishing cellular responses in the face of multiple stimuli. In this study, potential regulatory interactions between signal transduction systems activated by growth factor receptors and by G-protein-coupled receptors were examined using human neuroblastoma SH-SY5Y cells which express endogenous epidermal growth factor (EGF) and muscarinic M3 receptors. Activation of muscarinic receptors with carbachol was found to inhibit EGF-induced signaling, including tyrosine phosphorylation of the adaptor protein Cbl and of the EGF receptor, and complex formation between Shc proteins and the EGF receptor and Grb2. Protein kinase C, which is activated by muscarinic M3 receptors, mediated this inhibitory cross-talk. Activation of EGF receptors was found to inhibit muscarinic receptor-induced tyrosine phosphorylation of focal adhesion kinase and paxillin. Reactive oxygen species, which are formed as components of the EGF signaling cascade, mediated this inhibitory cross-talk. These mutual inhibitory interactions demonstrate novel mechanisms for neuronal integration of multiple signals generated by activation of receptors by neurotransmitters and growth factors.  相似文献   

16.
We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field.This review deals exclusively with the disposition and function of the human ErbB (HER) family of receptor tyrosine kinases (RTKs) in the plasma membrane of living cells. We have divided the material into four main topics: (1) distribution and aggregation state of ErbB family members; (2) the 3D structure of the ErbB1 and ErbB2 receptors; (3) the role of receptors located on extensions (filopodia) of the cell body; and (4) the phenomenon and implications of nonligand-dependent activation of the receptors.  相似文献   

17.
Adhesion of human primary skin fibroblasts and ECV304 endothelial cells to immobilized matrix proteins, beta1 or alphav integrin antibodies stimulates tyrosine phosphorylation of the epidermal growth factor (EGF) receptor. This tyrosine phosphorylation is transiently induced, reaching maximal levels 30 min after adhesion, and it occurs in the absence of receptor ligands. Similar results were observed with EGF receptor-transfected NIH-3T3 cells. Use of a kinase-negative EGF receptor mutant demonstrates that the integrin-stimulated tyrosine phosphorylation is due to activation of the receptor's intrinsic kinase activity. Integrin-mediated EGF receptor activation leads to Erk-1/MAP kinase induction, as shown by treatment with the specific inhibitor tyrphostin AG1478 and by expression of a dominant-negative EGF receptor mutant. EGF receptor and Erk-1/MAP kinase activation by integrins does not lead per se to cell proliferation, but is important for entry into S phase in response to EGF or serum. EGF receptor activation is also required for extracellular matrix-mediated cell survival. Adhesion-dependent MAP kinase activation and survival are regulated through EGF receptor activation in cells expressing this molecule above a threshold level (5x10(3) receptors per cell). These results demonstrate that integrin-dependent EGF receptor activation is a novel signaling mechanism involved in cell survival and proliferation in response to extracellular matrix.  相似文献   

18.
Lowes VL  Ip NY  Wong YH 《Neuro-Signals》2002,11(1):5-19
Activation of G protein-coupled receptors (GPCRs) leads to stimulation of classical G protein signaling pathways. In addition, GPCRs can activate the mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases (JNKs), and p38 MAPKs, and thereby influence cell proliferation, cell differentiation and mitogenesis. Cross talk between GPCRs and receptor tyrosine kinases (RTKs) is an incredibly complex process, and the exact signaling molecules involved are largely dependent on the cell type and the type of receptor that is activated. In this review we investigate recent advances that have been made in understanding the mechanisms of cross talk between GPCRs and RTKs, with a focus on GPCR-mediated activation of the Ras/MAPK pathway, GPCR-induced transactivation of RTKs, GPCR-mediated activation of JNK, and p38 MAPK, integration of signals by RhoGTPases, and activation of G protein signaling pathways by RTKs.  相似文献   

19.
Abstract: We have used monolayers of control 3T3 fibroblasts and 3T3 fibroblasts expressing transfected cell adhesion molecules (CAMs)—NCAM, N-cadherin, and L1—as a culture substrate for cerebellar neurones. The transfected CAMs promote neurite outgrowth by activating a second messenger pathway that culminates in calcium influx into neurones through N-and l -type calcium channels. We show that the same neurite outgrowth response can be directly induced by arachidonic acid (10 μ M ) and that this response can be inhibited by N-and l -type calcium channel antagonists. In cells, arachidonic acid can be generated by phospholipase A2 or by the sequential activities of a phospholipase C (to generate diacylglycerol) and diacylglycerol lipase. In the present study we show the neurite outgrowth stimulated by CAMs (but not by various other agents) can be abolished by an inhibitor of diacylglycerol lipase acting at a site upstream from calcium channel activation. The results suggest that arachidonic acid and/or one of its metabolites is the second messenger that activates calcium channels in the CAM signalling pathway leading to axonal growth, and this is supported by recent evidence that shows the same concentrations of arachidonic acid can increase voltage-dependent calcium currents in cardiac myocytes.  相似文献   

20.
Eph receptors and their membrane‐bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell‐adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand‐mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1‐dependent Rac1 activation and ephrinA1‐induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号