首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-type Ca(2+) channels are unusual in displaying two opposing forms of autoregulatory feedback, Ca(2+)-dependent inactivation and facilitation. Previous studies suggest that both involve direct interactions between calmodulin (CaM) and a consensus CaM-binding sequence (IQ motif) in the C terminus of the channel's alpha(1C) subunit. Here we report the functional effects of an extensive series of modifications of the IQ motif aimed at dissecting the structural determinants of the different forms of modulation. Although the combined substitution by alanine at five key positions (Ile(1624), Gln(1625), Phe(1628), Arg(1629), and Lys(1630)) abolished all Ca(2+) dependence, corresponding single alanine replacements behaved similarly to the wild-type channel (77wt) in four of five cases. The mutant I1624A stood out in displaying little or no Ca(2+)-dependent inactivation, but clear Ca(2+)- and frequency-dependent facilitation. An even more pronounced tilt in favor of facilitation was seen with the double mutant I1624A/Q1625A: overt facilitation was observed even during a single depolarizing pulse, as confirmed by two-pulse experiments. Replacement of Ile(1624) by 13 other amino acids produced graded and distinct patterns of change in the two forms of modulation. The extent of Ca(2+)-dependent facilitation was monotonically correlated with the affinity of CaM for the mutant IQ motif, determined in peptide binding experiments in vitro. Ca(2+)-dependent inactivation also depended on strong CaM binding to the IQ motif, but showed an additional requirement for a bulky, hydrophobic side chain at position 1624. Abolition of Ca(2+)-dependent modulation by IQ motif modifications mimicked and occluded the effects of overexpressing a dominant-negative CaM mutant.  相似文献   

2.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   

3.
When opened by depolarization, L-type calcium channels are rapidly inactivated by the elevation of Ca(2+) concentration on the cytoplasmic side. Recent studies have shown that the interaction of calmodulin with the proximal part of the cytoplasmic C-terminal tail of the channel plays a prominent role in this modulation. Two motifs interacting with calmodulin in a Ca(2+)-dependent manner have been described: the IQ sequence and more recently the neighboring CB sequence. Here, using synthetic peptides and fusion proteins derived from the Ca(v)1.2 channel combined with biochemical techniques, we show that these two peptides are the only motifs of the cytoplasmic tail susceptible to interact with calmodulin. We determined the K(d) of the CB interaction with calmodulin to be 12 nm, i.e. below the K(d) of IQ-calmodulin, thereby precluding a competitive displacement of CB by IQ in the presence of Ca(2+). In place, we demonstrated that a ternary complex is formed at high Ca(2+) concentration, provided that calmodulin and the peptides are initially allowed to interact at a low Ca(2+) concentration. These results provide evidence that CB and IQ motifs interacting together with calmodulin constitute a minimal molecular switch leading to Ca(2+)-induced inactivation. In addition, we suggest that they could also be the tethering site of calmodulin.  相似文献   

4.
Kim J  Ghosh S  Nunziato DA  Pitt GS 《Neuron》2004,41(5):745-754
Ca(2+)-dependent inactivation (CDI) of L-type voltage-gated Ca(2+) channels limits Ca(2+) entry into neurons, thereby regulating numerous cellular events. Here we present the isolation and purification of the Ca(2+)-sensor complex, consisting of calmodulin (CaM) and part of the channel's pore-forming alpha(1C) subunit, and demonstrate the Ca(2+)-dependent conformational shift that underlies inactivation. Dominant-negative CaM mutants that prevent CDI block the sensor's Ca(2+)-dependent conformational change. We show how Ile1654 in the CaM binding IQ motif of alpha(1C) forms the link between the Ca(2+) sensor and the downstream inactivation machinery, using the alpha(1C) EF hand motif as a signal transducer to activate the putative pore-occluder, the alpha(1C) I-II intracellular linker.  相似文献   

5.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

6.
L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation properties of wild-type and mutant V1548Y channels, as gauged by a novel inactivation model incorporating multivalent Ca(2+) binding of CaM.  相似文献   

7.
Peterson BZ  DeMaria CD  Adelman JP  Yue DT 《Neuron》1999,22(3):549-558
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. This result demonstrates that CaM is the actual Ca2+ sensor for inactivation and suggests that CaM is constitutively tethered to the channel complex. Inactivation is likely to occur via Ca2+ -dependent interaction of tethered CaM with an IQ-like motif on the carboxyl tail of alpha1c. CaM also binds to analogous IQ regions of N-, P/Q-, and R-type calcium channels, suggesting that CaM-mediated effects may be widespread in the calcium channel family.  相似文献   

8.
Erickson MG  Liang H  Mori MX  Yue DT 《Neuron》2003,39(1):97-107
L-type Ca(2+) channels possess a Ca(2+)-dependent inactivation (CDI) mechanism, affording feedback in diverse neurobiological settings and serving as prototype for unconventional calmodulin (CaM) regulation emerging in many Ca(2+) channels. Crucial to such regulation is the preassociation of Ca(2+)-free CaM (apoCaM) to channels, facilitating rapid triggering of CDI as Ca(2+)/CaM shifts to a channel IQ site (IQ). Progress has been hindered by controversy over the preassociation site, as identified by in vitro assays. Most critical has been the failure to resolve a functional signature of preassociation. Here, we deploy novel FRET assays in live cells to identify a 73 aa channel segment, containing IQ, as the critical preassociation pocket. IQ mutations disrupting preassociation revealed accelerated voltage-dependent inactivation (VDI) as the functional hallmark of channels lacking preassociated CaM. Hence, the alpha(1C) IQ segment is multifunctional-serving as ligand for preassociation and as Ca(2+)/CaM effector site for CDI.  相似文献   

9.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

10.
Neuronal voltage-dependent Ca(2+) channels of the N (alpha(1B)) and P/Q (alpha(1A)) type are inhibited by neurotransmitters that activate G(i/o) G proteins; a major part of the inhibition is voltage-dependent, relieved by depolarization, and results from a direct binding of Gbetagamma subunit of G proteins to the channel. Since cardiac and neuronal L-type (alpha(1C)) voltage-dependent Ca(2+) channels are not modulated in this way, they are presumed to lack interaction with Gbetagamma. However, here we demonstrate that both Gbetagamma and calmodulin directly bind to cytosolic N and C termini of the alpha(1C) subunit. Coexpression of Gbetagamma reduces the current via the L-type channels. The inhibition depends on the presence of calmodulin, occurs at basal cellular levels of Ca(2+), and is eliminated by EGTA. The N and C termini of alpha(1C) appear to serve as partially independent but interacting inhibitory gates. Deletion of the N terminus or of the distal half of the C terminus eliminates the inhibitory effect of Gbetagamma. Deletion of the N terminus profoundly impairs the Ca(2+)/calmodulin-dependent inactivation. We propose that Gbetagamma and calmodulin regulate the L-type Ca(2+) channel in a concerted manner via a molecular inhibitory scaffold formed by N and C termini of alpha(1C).  相似文献   

11.
In skeletal muscle the L-type Ca2+ channel directly controls the opening of the sarcoplasmic reticulum Ca2+ release channel (RYR1), and RYR1, in turn, prevents L-type Ca2+ channel inactivation. We demonstrate that the two proteins interact using calmodulin binding regions of both proteins. A recombinant protein representing amino acids 1393-1527 (D1393-1527) of the carboxyl-terminal tail of the skeletal muscle L-type voltage-dependent calcium channel binds Ca2+, Ca2+ calmodulin, and apocalmodulin. In the absence of calmodulin, D1393-1527 binds to both RYR1 and a peptide representing the calmodulin binding site of RYR1 (amino acids 3609-3643). In addition, biotinylated R3609-3643 peptide can be used with streptavidin beads to pull down [3H]PN200-110-labeled L-type channels from detergent-solubilized transverse tubule membranes. The binding of the L-type channel carboxyl-terminal tail to the calmodulin binding site on RYR1 may stabilize the contact between the two proteins, provide a mechanism for Ca2+ and/or calmodulin regulation of their interaction, or participate directly in functional signaling between these two proteins. A unique aspect of this study is the finding that calmodulin binding sequences can serve as specific binding motifs for proteins other than calmodulin.  相似文献   

12.
Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II.  相似文献   

13.
Ca2+-dependent inactivation (CDI) and facilitation (CDF) of the Ca(v)1.2 Ca2+ channel require calmodulin binding to a putative IQ motif in the carboxy-terminal tail of the pore-forming subunit. We present the 1.45 A crystal structure of Ca2+-calmodulin bound to a 21 residue peptide corresponding to the IQ domain of Ca(v)1.2. This structure shows that parallel binding of calmodulin to the IQ domain is governed by hydrophobic interactions. Mutations of residues I1672 and Q1673 in the peptide to alanines, which abolish CDI but not CDF in the channel, do not greatly alter the structure. Both lobes of Ca2+-saturated CaM bind to the IQ peptide but isoleucine 1672, thought to form an intramolecular interaction that drives CDI, is buried. These findings suggest that this structure could represent the conformation that calmodulin assumes in CDF.  相似文献   

14.
Ca(2+)-dependent inactivation (CDI) of L-type Ca(2+) channels plays a critical role in controlling Ca(2+) entry and downstream signal transduction in excitable cells. Ca(2+)-insensitive forms of calmodulin (CaM) act as dominant negatives to prevent CDI, suggesting that CaM acts as a resident Ca(2+) sensor. However, it is not known how the Ca(2+) sensor is constitutively tethered. We have found that the tethering of Ca(2+)-insensitive CaM was localized to the C-terminal tail of alpha(1C), close to the CDI effector motif, and that it depended on nanomolar Ca(2+) concentrations, likely attained in quiescent cells. Two stretches of amino acids were found to support the tethering and to contain putative CaM-binding sequences close to or overlapping residues previously shown to affect CDI and Ca(2+)-independent inactivation. Synthetic peptides containing these sequences displayed differences in CaM-binding properties, both in affinity and Ca(2+) dependence, leading us to propose a novel mechanism for CDI. In contrast to a traditional disinhibitory scenario, we suggest that apoCaM is tethered at two sites and signals actively to slow inactivation. When the C-terminal lobe of CaM binds to the nearby CaM effector sequence (IQ motif), the braking effect is relieved, and CDI is accelerated.  相似文献   

15.
Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.  相似文献   

16.
Calcium influx into cardiac myocytes via voltage-gated Ca channels is a key step in initiating the contractile response. During prolonged depolarizations, toxic Ca(2+) overload is prevented by channel inactivation occurring through two different processes identified by their primary trigger: voltage or intracellular Ca(2+). In physiological situations, cardiac L-type (Ca(V)1.2) Ca(2+) channels inactivate primarily via Ca(2+)-dependent inactivation (CDI), while neuronal P/Q (Ca(V)2.1) Ca(2+) channels use preferentially voltage-dependent inactivation (VDI). In certain situations however, these two types of channels have been shown to be able to inactivate by both processes. From a structural view point, the rearrangement occurring during CDI and VDI is not precisely known, but functional studies have underlined the role played by at least 2 channel sequences: a C-terminal binding site for the Ca(2+) sensor calmodulin, essential for CDI, and the loop connecting domains I and II, essential for VDI. The conserved regulation of VDI and CDI by the auxiliary channel beta subunit strongly suggests that these two mechanisms may use a set of common protein-protein interactions that are influenced by the auxiliary subunit. We will review our current knowledge of these interactions. New data are presented on L-P/Q (Ca(V)1.2/Ca(V)2.1) channel chimera that confirm the role of the I-II loop in VDI and CDI, and reveal some of the essential steps in Ca(2+) channel inactivation.  相似文献   

17.
Apocalmodulin and Ca(2+) calmodulin bind to overlapping sites on the ryanodine receptor skeletal form, RYR1, but have opposite functional effects on channel activity. Suramin, a polysulfonated napthylurea, displaces both forms of calmodulin, leading to an inhibition of activity at low Ca(2+) and an enhancement of activity at high Ca(2+). Calmodulin binding motifs on RYR1 are also able to directly interact with the carboxy-terminal tail of the transverse tubule dihydropyridine receptor (DHPR) (Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z., and Hamilton, S. L. (2001) J. Biol. Chem. 276, 38237-38241). Suramin binds directly to a peptide that corresponds to the calmodulin binding site of RYR1 (amino acids 3609-3643) and blocks the interaction of this peptide with both calmodulin and the carboxyl-terminal tail of the DHPR alpha(1)-subunit. Suramin, added to the internal solution of voltage-clamped skeletal myotubes, produces a concentration-dependent increase in the maximal magnitude of voltage-gated Ca(2+) transients without significantly altering L-channel Ca(2+) channel conducting activity. Together, these results suggest that an interaction between the carboxyl-terminal tail of the DHPR alpha(1)-subunit with the calmodulin binding region of RYR1 serves to limit sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling and that suramin-induced potentiation of voltage-gated Ca(2+) release involves a relief of this inhibitory interaction.  相似文献   

18.
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic reticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Cav1.2 subunit has been shown to bind both calcium-loaded (Ca2+CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca2+CaM can bind to the intact channel.  相似文献   

19.
Censarek P  Beyermann M  Koch KW 《Biochemistry》2002,41(27):8598-8604
An increasing number of proteins are found that are regulated by the Ca(2+)-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca(2+)-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca(2+)-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca(2+)-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca(2+) dependency.  相似文献   

20.
Calmodulin (CaM) functions as a Ca2+ sensor for inactivation and, in some cases, facilitation of a variety of voltage-dependent Ca2+ channels. A crucial determinant for CaM binding to these channels is the IQ motif in the COOH-terminal tail of the channel-forming subunit. The binding of CaM to IQ peptides from Lc-, P/Q-, and R-type, but not N-type, voltage-dependent Ca2+ channels increases the Ca2+ affinity of both lobes of CaM, producing similar N- and C-lobe Ca2+ affinities. Ca2+ associates with and dissociates from the N-lobe much more rapidly than the C-lobe when CaM is bound to the IQ peptides. Compared with the other IQ peptides, CaM-bound Lc-IQ has the highest Ca2+ affinity and the most rapid rates of Ca2+ association at both lobes, which is likely to make Ca2+ binding to CaM, bound to this channel, less sensitive than other channels to intracellular Ca2+ buffers. These kinetic differences in Ca2+ binding to the lobes of CaM when bound to the different IQ motifs may explain both the ability of CaM to perform multiple functions in these channels and the differences in CaM regulation of the different voltage-dependent Ca2+ channels. Ca2+-dependent inactivation; Ca2+-dependent facilitation; apocalmodulin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号