首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To determine if the interaction between ferredoxin and ferredoxin:NADP reductase is similar to the interaction between the purified proteins when the ferrodoxin:NADP reductase is membrane bound, the effect of pH, salt, and coupling state on the Km for ferredoxin in NADP reduction by chloroplast membranes has been examined. Increasing pH and salt concentrations as well as uncouplers all resulted in increases in the Km for ferredoxin. The pH and salt effects on the Km are similar to effects observed by others (C. Batie and H. Kamin (1981) J. Biol. Chem. 256, 7756-7763) on the dissociation constant for a complex between the two purified proteins, although the salt effect on the Km appears to be affected by the surface potential of the chloroplast membrane. These results suggest that the interaction between ferredoxin and the membrane-bound ferredoxin:NADP reductase is not greatly different from the interaction which has been characterized between the two purified proteins.  相似文献   

3.
The role of the negative charge of the E139 side-chain of Anabaena Ferredoxin-NADP+ reductase (FNR) in steering appropriate docking with its substrates ferredoxin, flavodoxin and NADP+/H, that leads to efficient electron transfer (ET) is analysed by characterization of several E139 FNR mutants. Replacement of E139 affects the interaction with the different FNR substrates in very different ways. Thus, while E139 does not appear to be involved in the processes of binding and ET between FNR and NADP+/H, the nature and the conformation of the residue at position 139 of Anabaena FNR modulates the precise enzyme interaction with the protein carriers ferredoxin (Fd) and flavodoxin (Fld). Introduction of the shorter aspartic acid side-chain at position 139 produces an enzyme that interacts more weakly with both ET proteins. Moreover, the removal of the charge, as in the E139Q mutant, or the charge-reversal mutation, as in E139K FNR, apparently enhances additional interaction modes of the enzyme with Fd, and reduces the possible orientations with Fld to more productive and stronger ones. Hence, removal of the negative charge at position 139 of Anabaena FNR produces a deleterious effect in its ET reactions with Fd whereas it appears to enhance the ET processes with Fld. Significantly, a large structural variation is observed for the E139 side-chain conformer in different FNR structures, including the E139K mutant. In this case, a positive potential region replaces a negative one in the wild-type enzyme. Our observations further confirm the contribution of both attractive and repulsive interactions in achieving the optimal orientation for efficient ET between FNR and its protein carriers.  相似文献   

4.
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.  相似文献   

5.
The small, soluble, (2Fe-2S)-containing protein ferredoxin (Fd) mediates electron transfer from the chloroplast photosystem I to ferredoxin: NADP+ oxidoreductase (FNR), a flavoenzyme located on the stromal side of the thylakoid membrane. Ferredoxin and FNR form a 1:1 complex, which is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. We have used differential chemical modification of Fd to locate aspartic and glutamic acid residues at the intermolecular interface of the Fd:FNR complex (both proteins from spinach). Carboxyl groups of free and FNR-bound Fd were amidated with carbodiimide/2-aminoethane sulfonic acid (taurine). The differential reactivity of carboxyl groups was assessed by double isotope labeling. Residues protected in the Fd:FNR complex were D-26, E-29, E-30, D-34, D-65, and D-66. The protected residues belong to two domains of negative electrostatic surface potential on either side of the iron-sulfur cluster. The negative end of the molecular dipole moment vector of Fd (377 Debye) is close to the iron-sulfur cluster, in the center of the area demarcated by the protected carboxyl groups. The molecular dipole moment and the asymmetric surface potential may help to orient Fd in the reaction with FNR. In support, we find complementary domains of positive electrostatic potential on either side of the FAD redox center of FNR. The results allow a binding model for the Fd:FNR complex to be constructed.  相似文献   

6.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners. We therefore studied the interactions and electron-transfer properties of FNR proteins mutated at their C-termini. The results obtained with the homologous reductases from pea and Anabaena PCC7119 indicate that interactions with Fd or Fld are hardly affected by replacement of this tyrosine by tryptophan, phenylalanine, or serine. In contrast, electron exchange is impaired in all mutants, especially in the nonconservative substitutions, without major differences between the eukaryotic and the bacterial FNR. Introduction of a serine residue shifts the flavin reduction potential to less negative values, whereas semiquinone stabilization is severely hampered, introducing further constraints to the one-electron-transfer processes. Thus, the C-terminal tyrosine of FNR plays distinct and complementary roles during the catalytic cycle, (i) by lowering the affinity for NADP(+)/H to levels compatible with steady-state turnover, (ii) by contributing to the flavin semiquinone stabilization required for electron splitting, and (iii) by modulating the rates of electron exchange with the protein partners.  相似文献   

7.
Ferredoxin:NADP+ oxidoreductase (ferredoxin: NADP+ reductase, EC 1.18.1.2) was shown to form a ternary complex with its substrates ferredoxin (Fd) and NADP(H), but the ternary complex was less stable than the separate binary complexes. Kd for oxidized binary Fd-ferredoxin NADP+ reductase complex was less than 50 nM; Kd(Fd) increased with NADP+ concentration, approaching 0.5-0.6 microM when the flavoprotein was saturated with NADP+ K(NADP+) also increased from about 14 microM to about 310 microM, on addition of excess Fd. The changes in Kd were consistent with negative cooperativity between the associations of Fd and NADP+ and with our unpublished observations which suggest that product dissociation is rate-limiting in the reaction mechanism. Similar interference in binding was observed in more reduced states; NADPH released much ferredoxin:NADP+ reductase from Fd-Sepharose whether the proteins were initially oxidized or reduced. Complexation between Fd and ferredoxin: NADP+ reductase was found to shield each center from paramagnetic probes; charge specificity suggested that the active sites of Fd and ferredoxin:NADP+ reductase were, respectively, negatively and positively charged.  相似文献   

8.
9.
10.
Ferredoxin (flavodoxin)-NADP(H) reductases (FNR) are ubiquitous flavoenzymes that deliver NADPH or low potential one-electron donors (ferredoxin, flavodoxin) to redox-based metabolisms in plastids, mitochondria and bacteria. The plant-type reductase is also the basic prototype for one of the major families of flavin-containing electron transferases that display common functional and structural properties. Many aspects of FNR biochemistry have been extensively characterized in recent years using a combination of site-directed mutagenesis, steady-state and transient kinetic experiments, spectroscopy and X-ray crystallography. Despite these considerable advances, various key features in the enzymology of these important reductases remain yet to be explained in molecular terms. This article reviews the current status of these open questions. Measurements of electron transfer rates and binding equilibria indicate that NADP(H) and ferredoxin interactions with FNR result in a reciprocal decrease of affinity, and that this induced-fit step is a mandatory requisite for catalytic turnover. However, the expected conformational movements are not apparent in the reported atomic structures of these flavoenzymes in the free state or in complex with their substrates. The overall reaction catalysed by FNR is freely reversible, but the pathways leading to NADP+ or ferredoxin reduction proceed through entirely different kinetic mechanisms. Also, the reductases isolated from various sources undergo inactivating denaturation on exposure to NADPH and other electron donors that reduce the FAD prosthetic group, a phenomenon that might have profound consequences for FNR function in vivo. The mechanisms underlying this reductive inhibition are so far unknown. Finally, we provide here a rationale to interpret FNR evolution in terms of catalytic efficiency. Using the formalism of the Albery-Knowles theory, we identified which parameter(s) have to be modified to make these reductases even more proficient under a variety of conditions, natural or artificial. Flavoenzymes with FNR activity catalyse a number of reactions with potential importance for biotechnological processes, so that modification of their catalytic competence is relevant on both scientific and technical grounds.  相似文献   

11.
12.
In order to elucidate the importance of a ferredoxin (Fd) Arg-Glu pair involved in dynamic exchange from intra- to intermolecular salt bridges upon complex formation with ferredoxin-NADP(+) oxidoreductase (FNR), Equisetum arvense FdI and FdII were investigated as normal and the pair-lacking Fd, respectively. The FdI mutant lacking this pair was unstable and rapidly lost the [2Fe-2S] cluster. The catalytic constant (k(cat)) of the electron transfer for FdI is 5.5 times that for FdII and the introduction of this pair into FdII resulted in the increase of k(cat) to a level comparable to that for FdI, demonstrating directly that the Arg-Glu pair is important for efficient electron transfer between Fd and FNR.  相似文献   

13.
A mutant of Synechocystis PCC 6803, deficient in psaE, assembles photosystem I reaction centers without the PsaE subunit. Under conditions of acceptor-side rate-limited photoreduction assays in vitro (with 15 microM plastocyanin included), using 100 nM ferredoxin:NADP(+) reductase (FNR) and either Synechocystis flavodoxin or spinach ferredoxin, lower rates of NADP(+) photoreduction were measured when PsaE-deficient membranes were used, as compared to the wild type. This effect of the psaE mutation proved to be due to a decrease of the apparent affinity of the photoreduction assay system for the reductase. In the psaE mutant, the relative petH (encoding FNR) expression level was found to be significantly increased, providing a possible explanation for the lack of a phenotype (i.e., a decrease in growth rate) that was expected from the lower rate of linear electron transport in the mutant. A kinetic model was constructed in order to simulate the electron transfer from reduced plastocyanin to NADP(+), and test for possible causes for the observed change in affinity for FNR. The numerical simulations predict that the altered reduction kinetics of ferredoxin, determined for the psaE mutant [Barth, P., et al., (1998) Biochemistry 37, 16233-16241], do not significantly influence the rate of linear electron transport to NADP(+). Rather, a change in the dissociation constant of ferredoxin for FNR does affect the saturation profile for FNR. We therefore propose that the PsaE-dependent transient ternary complex PSI/ferredoxin/FNR is formed during linear electron transport. Using the yeast two-hybrid system, however, no direct interaction could be demonstrated in vivo between FNR and PsaE fusion proteins.  相似文献   

14.
The kinetics of reduction of oxidized Clostridium pasteurianum rubredoxin (Rdox) by free flavin semiquinones generated by the laser flash photolysis technique and by spinach ferredoxin:NADP+ reductase (FNR) semiquinone (also produced by flavin semiquinone reduction) have been investigated under anaerobic conditions. 5-Deazariboflavin semiquinone (5-dRf) rapidly reduces oxidized rubredoxin (Rdox) (k = 3.0 X 10(8) M-1 S-1) and oxidized ferredoxin:NADP+ reductase (FNRox) to the semiquinone level (k = 5.5 X 10(8) M-1 S-1). Lumiflavin semiquinone reduces Rdox more slowly (k = 1.3 X 10(7) M-1 S-1) and is not measurably reactive with FNRox. Absorption difference spectroscopy and difference CD indicate that Rdox and FNRox form a 1:1 complex at low ionic strength (10 mM), which is completely dissociated at higher ionic strength (310 mM). Apparent second order rate constants for reduction of Rdox in its free and complexed state by lumiflavin semiquinone are the same. Reduction of Rdox (both free and complexed) by free FNR semiquinone and intracomplex electron transfer were investigated using 5-dRf as the reductant. At I = 10 mM, a first order rate constant of 2.0 X 10(3) S-1 was obtained, which corresponds to the processes involved in intracomplex electron transfer from FNR semiquinone to Rdox. A second order reaction between free FNR semiquinone and complexed Rdox was also observed to occur (k = 5 X 10(7) M-1 S-1). At I = 310 mM, these reactions are not observed and the reaction of FNR semiquinone with free Rdox is second order (k = 4 X 10(6) M-1 S-1).  相似文献   

15.
Transient absorbance measurements following laser flash photolysis have been used to measure the rate constants for electron transfer (et) from reduced Anabaena ferredoxin (Fd) to wild-type and seven site-specific charge-reversal mutants of Anabaena ferredoxin:NADP+ reductase (FNR). These mutations have been designed to probe the importance of specific positively charged amino acid residues on the surface of the FNR molecule near the exposed edge of the FAD cofactor in the protein-protein interaction during et with Fd. The mutant proteins fall into two groups: overall, the K75E, R16E, and K72E mutants are most severely impaired in et, and the K138E, R264E, K290E, and K294E mutants are impaired to a lesser extent, although the degree of impairment varies with ionic strength. Binding constants for complex formation between the oxidized proteins and for the transient et complexes show that the severity of the alterations in et kinetics for the mutants correlate with decreased stabilities of the protein-protein complexes. Those mutated residues, which show the largest effects, are located in a region of the protein in which positive charge predominates, and charge reversals have large effects on the calculated local surface electrostatic potential. In contrast, K138, R264, K290, and K294 are located within or close to regions of intense negative potential, and therefore the introduction of additional negative charges have considerably smaller effects on the calculated surface potential. We attribute the relative changes in et kinetics and complex binding constants for these mutants to these characteristics of the surface charge distribution in FNR and conclude that the positively charged region of the FNR surface located in the vicinity of K75, R16, and K72 is especially important in the binding and orientation of Fd during electron transfer.  相似文献   

16.
Oxidized ferredoxin:NADP+ oxidoreductase (FNR) was slowly and irreversibly inactivated by N-ethylmaleimide. Complete protection against inactivation was afforded by saturating concentrations of NADP+. In the presence of NADPH, a rapid inhibition of the enzyme ensued; however, this inhibition was found to be reversible. In the tryptic map of the flavoprotein, modified with N-ethyl[2,3-14C]maleimide in oxidizing conditions, a unique radioactive peptide was found. Its sequence comprised residues 110-117 of the enzyme: Lys116 was shown to be the residue alkylated by N-ethylmaleimide. It is noteworthy that the same residue of FNR was found to be modified by 5-dimethylaminoaphthalene-1-sulfonyl(dansyl) chloride at the putative NADP(H)-binding site [Cidaria, D., Biondi, P. A., Zanetti, G. & Ronchi, S. (1985) Eur. J. Biochem. 146, 295-299]. Furthermore, the data reported here demonstrate that the sulfhydryl groups of FNR are not involved in enzyme inactivation by N-ethylmaleimide.  相似文献   

17.
The mechanism of hydride transfer between Anabaena FNR and NADP+/H was analysed using for the first time stopped-flow photodiode array detection and global analysis deconvolution. The results indicated that the initial spectral changes, occurring within the instrumental dead time upon reaction of FNR with NADP+/H, included not only the initial interaction and complex formation, but also the first subsequent steps of the sequential reactions that involve hydride transfer. Two different charge-transfer complexes formed prior and upon hydride transfer, FNRox-NADPH and FNRrd-NADP+. Detectable amounts of FNRox-NADPH were found at equilibrium, but FNRrd-NADP+ accumulated to a small extent and quickly evolved. The spectral properties of both charge-transfer complexes, for the first time in Anabaena FNR, as well as the corresponding inter-conversion hydride transfer rates were obtained. The need of an adequate initial interaction between NADP+/H and FNR, and subsequent conformational changes, was also established by studying the reactions of two FNR mutants.  相似文献   

18.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.  相似文献   

19.
The enzyme ferredoxin-NADP(+) reductase (FNR) forms a 1 : 1 complex with ferredoxin (Fd) or flavodoxin (Fld) that is stabilised by both electrostatic and hydrophobic interactions. The electrostatic interactions occur between acidic residues of the electron transfer (ET) protein and basic residues on the FNR surface. In the present study, several charge-reversal mutants of FNR have been prepared at the proposed site of interaction of the ET protein: R16E, K72E, K75E, K138E, R264E, K290E and K294E. All of these mutants have been assayed for reactivity with Fd and Fld using steady-state and stopped-flow kinetics. Their abilities for complex formation with the ET proteins have also been tested. The data presented here indicate that the mutated residues situated within the FNR FAD-binding domain are more important for achieving maximal ET rates, either with Fd or Fld, than those situated within the NADP(+)-binding domain, and that both ET proteins occupy the same region for the interaction with the reductase. In addition, each individual residue does not appear to participate to the same extent in the different processes with Fd and Fld.  相似文献   

20.
Fd:NADP+ oxidoreductase (FNR) is one of the key enzymes in photosynthetic electron transport. The gene petH encoding FNR of Synechococcus sp. PCC 7002 was cloned into the expressing vector pET-3 d' and overexpressed in E. coli. The amount of recombinant FNR (rFNR) was over 50% of the total cellular proteins. There were two forms of FNR activity, one is soluble and the other one was in the form of inclusion bodies. The soluble rFNR was purified through ion exchange chromatography and gel chromatography. The rFNR in the form of inclusion bodies was first solubilized with 6.7 mol/L urea, and then refolded into the active form in the presence of flavin adenine dinucleotide (FAD). Further purification was performed by ion exchange chromatography. The rFNR pmified from either form of the expressed product had the maximum absorption spectrum as that of the natural FNR from cyanobacteria, whose maximum absorption was at 273, 385 and 456 ran respectively. N-tenninal sequencing showed that rFNR was indeed a product of petH gene expression, rFNR could catalyze the electron transport from P700 to NADP+ in the presence of ferredoxin. The optimal pH for diaphorase activity of rFNR was 8.0 and the optimal temperature was 30 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号