首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

2.
DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.  相似文献   

3.
A new method of membrane-bound DNA × DNA hybridization was devised to accommodate the study of small quantities of DNA obtained from museum specimens for phylogeny reconstruction. Membranebound, single-stranded target genomic DNAs were competitively hybridized with a total genomic DNA probe to form hybrid duplexes required for the DNA dissociation experiments. We compared the thermal elution profiles derived from dissociating duplexes made with probes of whole genomic, single-copy, and repetitive DNA, as well as solution DNA × DNA hybridization using sc tracer. Quantitatively, pairwise indices of genetic distance derived from duplexes made with genomic probes depended entirely on hybridization of repetitive sequences, but a parallel set of experiments using repetitive and sc probes produced qualitatively similar results. The indices of genetic distance generated by the membrane-bound hybrids form an internally consistent, resolved tree which is in agreement with the solution DNA × DNA hybridization trials and traditional views of the phylogeny of the taxa under study.Correspondence to: P. Houde  相似文献   

4.
Cross-hybridization of repetitive sequences in genomic and expression arrays is reported to be suppressed with repeat-blocking nucleic acids (Cot-1 DNA). Contrary to expectation, we demonstrated that Cot-1 also enhanced non-specific hybridization between probes and genomic targets. When added to target DNA, Cot-1 enhanced hybridization (2.2- to 3-fold) to genomic probes containing conserved repetitive elements. In addition to repetitive sequences, Cot-1 was found to be enriched for linked single copy (sc) sequences. Adventitious association between these sequences and probes distort quantitative measurements of the probes hybridized to desired genomic targets. Quantitative microarray hybridization studies using Cot-1 DNA are also susceptible to these effects, especially for probes that map to genomic regions containing conserved repetitive sequences. Hybridization measurements with such probes are less reproducible in the presence of Cot-1 than for probes derived from sc regions or regions containing divergent repeat elements, a finding with significant ramifications for genomic and expression microarray studies. We mitigated the requirement for Cot-1 either by hybridizing with computationally defined sc probes lacking repeats or by substituting synthetic repetitive elements complementary to sequences in genomic probes.  相似文献   

5.
We isolated four W chromosome-derived bacterial artificial chromosome (W-BAC) clones from Bombyx mori BAC libraries by the polymerase chain reaction and used them as probes for fluorescence in situ hybridization (FISH) on chromosome preparations from B. mori females. All four W-BAC probes surprisingly highlighted the whole wild-type W sex chromosome and also identified the entire original W-chromosomal region in W chromosome-autosome translocation mutants. This is the first successful identification of a single chromosome by means of BAC-FISH in species with holokinetic chromosomes. Genomic in situ hybridization (GISH) by using female-derived genomic probes highlighted the W chromosome in a similar chromosome-painting manner. Besides the W, hybridization signals of W-BAC probes also occurred in telomeric and/or subtelomeric regions of the autosomes. These signals coincided well with those of female genomic probes except one additional GISH signal that was observed in a large heterochromatin block of one autosome pair. Our results support the opinion that the B. mori W chromosome accumulated transposable elements and other repetitive sequences that also occur, but scattered, elsewhere in the respective genome. Edited by: E.R. Schmidt  相似文献   

6.
PROBER is an oligonucleotide primer design software application that designs multiple primer pairs for generating PCR probes useful for fluorescence in situ hybridization (FISH). PROBER generates Tiling Oligonucleotide Probes (TOPs) by masking repetitive genomic sequences and delineating essentially unique regions that can be amplified to yield small (100-2000 bp) DNA probes that in aggregate will generate a single, strong fluorescent signal for regions as small as a single gene. TOPs are an alternative to bacterial artificial chromosomes (BACs) that are commonly used for FISH but may be unstable, unavailable, chimeric, or non-specific to small (10-100 kb) genomic regions. PROBER can be applied to any genomic locus, with the limitation that the locus must contain at least 10 kb of essentially unique blocks. To test the software, we designed a number of probes for genomic amplifications and hemizygous deletions that were initially detected by Representational Oligonucleotide Microarray Analysis of breast cancer tumors. AVAILABILITY: http://prober.cshl.edu  相似文献   

7.
Structural variations in genomes are commonly studied by (micro)array-based comparative genomic hybridization. The data analysis methods to infer copy number variation in model organisms (human, mouse) are established. In principle, the procedures are based on signal ratios between test and reference samples and the order of the probe targets in the genome. These procedures are less applicable to experiments with non-model organisms, which frequently comprise non-sequenced genomes with an unknown order of probe targets. We therefore present an additional analysis approach, which does not depend on the structural information of a reference genome, and quantifies the presence or absence of a probe target in an unknown genome. The principle is that intensity values of target probes are compared with the intensities of negative-control probes and positive-control probes from a control hybridization, to determine if a probe target is absent or present. In a test, analyzing the genome content of a known bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful, demonstrated by receiver operating characteristic area under the curve values larger than 0.9995. We show its usability in various applications, such as comparing genome content and validating next-generation sequencing reads from eukaryotic non-model organisms.  相似文献   

8.
Copy number variants (CNVs) are currently defined as genomic sequences that are polymorphic in copy number and range in length from 1000 to several million base pairs. Among current array-based CNV detection platforms, long-oligonucleotide arrays promise the highest resolution. However, the performance of currently available analytical tools suffers when applied to these data because of the lower signal:noise ratio inherent in oligonucleotide-based hybridization assays. We have developed wuHMM, an algorithm for mapping CNVs from array comparative genomic hybridization (aCGH) platforms comprised of 385 000 to more than 3 million probes. wuHMM is unique in that it can utilize sequence divergence information to reduce the false positive rate (FPR). We apply wuHMM to 385K-aCGH, 2.1M-aCGH and 3.1M-aCGH experiments comparing the 129X1/SvJ and C57BL/6J inbred mouse genomes. We assess wuHMM's performance on the 385K platform by comparison to the higher resolution platforms and we independently validate 10 CNVs. The method requires no training data and is robust with respect to changes in algorithm parameters. At a FPR of <10%, the algorithm can detect CNVs with five probes on the 385K platform and three on the 2.1M and 3.1M platforms, resulting in effective resolutions of 24 kb, 2–5 kb and 1 kb, respectively.  相似文献   

9.
We describe a novel approach for the identification and mapping of polymorphic markers. Amplicons are generated by ligation of double-stranded adaptor molecules to genomic DNA cleaved with a restriction enzyme. Using primers that extend beyond the restriction site, reduced-complexity subsets of fragments are generated by PCR. Differences in the composition of complex probes generated from DNA of different strains are revealed through hybridization against high-density filter grids of large-insert genomic clones. Genetic mapping of genomic clones is achieved by hybridizing complex probes derived from backcross animals against the polymorphic clones. The mouse was chosen as a model system to test the feasibility of this technique because of the general availability of backcross resources and genomic libraries. Nevertheless, we would expect the method to be of particular use to generate markers for species that have not yet been extensively studied, because a substantial number of easy-to-use markers can be recruited in a relatively short period of time. Received: 20 January 1998 / Accepted: 21 April 1998  相似文献   

10.
D Gao  T Schmidt  C Jung 《Génome》2000,43(6):1073-1080
Repetitive DNA sequences have been isolated from a Sau3AI plasmid library of tetraploid Beta corolliflora (2n = 4x = 36), a wild relative of sugar beet (B. vulgaris). The library was screened by differential hybridization with genomic DNA of B. corolliflora and B. vulgaris. When used as probes for Southern hybridization of genomic DNA, six clones were determined to represent highly repetitive DNA families present only in the B. corolliflora genome. Five other sequences were highly repetitive in B. corolliflora and low or single copy in B. vulgaris. The insert size varied between 43 bp and 448 bp. Two sequences pBC1279 and pBC1944 displayed strong homology to a previously cloned satellite DNA from B. nana. With one exception, sequences are tandemly arranged as revealed by a typical ladder pattern after genomic Southern hybridization. The chromosomal distribution of five probes was determined by fluorescence in situ hybridization (FISH) of mitotic metaphases from B. corolliflora and a triploid hybrid between B. vulgaris and B. corolliflora. Three sequences were spread along all chromosome arms of B. corolliflora while one sequence was present on only six chromosomes. The chromosome-specific sequence pBC216 was found in close vicinity to the 5S rDNA located on B. corolliflora chromosome IV. This set of species-specific sequences has the potential to be used as probes for the identification of monosomic alien addition lines and for marker-assisted gene transfer from wild beet to cultivated beet.  相似文献   

11.
Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique.  相似文献   

12.

Background  

Microarray-CGH experiments are used to detect and map chromosomal imbalances, by hybridizing targets of genomic DNA from a test and a reference sample to sequences immobilized on a slide. These probes are genomic DNA sequences (BACs) that are mapped on the genome. The signal has a spatial coherence that can be handled by specific statistical tools. Segmentation methods seem to be a natural framework for this purpose. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose BACs share the same relative copy number on average. We model a CGH profile by a random Gaussian process whose distribution parameters are affected by abrupt changes at unknown coordinates. Two major problems arise : to determine which parameters are affected by the abrupt changes (the mean and the variance, or the mean only), and the selection of the number of segments in the profile.  相似文献   

13.
Previous studies on restriction fragment length polymorphism of bovine major histocompatibility complex class II genes have primarily been based on the use of human probes. In the present study bovine probes for DQA, DQB, DRB and DYA were used for RFLP analysis of cattle genomic DNA digested with PvuII and TaqI. There was an excellent agreement between the RFLP results obtained with homologous and heterologous probes. Although a few 'new' restriction fragments were revealed with the bovine probes there was no discrepancy with regard to the classification of allelic types with the two types of probes. The major advantages of using bovine probes were a better hybridization signal and reduced cross-hybridization between loci. Hybridization experiments with DQA probes for the first domain exon from two different genomic clones revealed the presence of two distinct types of bovine DQA genes. Surprisingly, these probes did not cross-hybridize at high stringency, indicating that the two genes are quite divergent. Hybridization with a recently described genomic clone for a novel bovine alpha-chain gene confirmed that it corresponds to the DYA gene which had previously been identified by cross-hybridization to a human DQA probe.  相似文献   

14.
Total genomic biotinylated probes which can identify leptospires by hybridization on filters or by in situ hybridization are described in this study. According to the weak G + C content of the strains studied (35-39%) and owing to the decreasing melting temperature (Tm) due to overbiotinylation, hybridization and wash temperatures were optimized at 33 degrees C and at 42 degrees C respectively. Fourteen serovars of Leptospira interrogans belonging to 11 different serogroups and three serovars of Leptospira biflexa were used in this study. Cross-hybridization results show that it is possible, by means of such probes, specifically to recognize pathogenic strains. These probes did not hybridize with the three saprophytic strains: L. buenos-aires, L. patoc and L. andamana. We also ran a total genomic probe, specific to the serovar buenos-aires which hybridizes only with homologous DNA.  相似文献   

15.
由于草菇是一种同宗结合的食用真菌,这给草菇的杂交育种带来了一定的困难。本文在建立草菇部分基因文库的基础之上,对草菇的基因文库进行了鉴定。在草菇基因文库中任意抽取72个克隆,利用专一的PCR方法,测出在草菇基因文库中,草菇基因组DNA的平均大小为1156个碱基对。在基因文库中任意选择53个克隆,利用专一的PCR进行DNA扩增以及dig非同位素标记,用于和草菇基因组DNA杂交。在测试的53个克隆中有8%的高度重复序列,36%中度重复序列和56%的低度重复序列。  相似文献   

16.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

17.
 Wheat anonymous probes were selected for their efficiency for providing a readable hybridization pattern and revealing RFLP among wheat varieties. We report the mapping of 132 such probes (20 wheat-leaf cDNA, 28 wheat-root cDNA and 84 genomic DNA) on the reference population of the International Triticeae Mapping Initiative (ITMI) derived from the cross W-7984 with Opata85. Each probe has been characterized for its polymorphism information content. The 132 probes allowed us to map 160 loci. Received: 7 July 1998 / Accepted: 19 October 1998  相似文献   

18.
The hybridization behavior of small oligonucleotides arrayed on glass slides is currently unpredictable. In order to examine the hybridization efficiency of capture probes along target nucleic acid, 20-mer oligonucleotide probes were designed to hybridize at different distances from the 5' end of two overlapping 402- and 432-bp ermB products amplified from the target DNA. These probes were immobilized via their 5' end onto glass slides and hybridized with the two labeled products. Evaluation of the hybridization signal for each probe revealed an inverse correlation with the length of the 5' overhanging end of the captured strand and the hybridization signal intensity. Further experiments demonstrated that this phenomenon is dependent on the reassociation kinetics of the free overhanging tail of the captured DNA strand with its complementary strand. This study delineates key predictable parameters that govern the hybridization efficiency of short capture probes arrayed on glass slides. This should be most useful for designing arrays for detection of PCR products and nucleotide polymorphisms.  相似文献   

19.
The vast majority of probes used in fluorescence in situ hybridization (FISH) contain repetitive DNA. This DNA is usually competed out of a hybridization reaction by the addition of an unlabeled blocking agent, Cot-1 DNA. We have successfully removed repetitive DNA from two complex FISH probe sets: a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) single human chromosome library and genomic DNA. The procedure involved hybridizing in solution a DOP-PCR-amplifiable probe set with a 50-fold excess of biotin-labeled Cot-1 DNA, and capturing the Cot-1 DNA-containing hybrids using streptavidin magnetic particles, followed by purification and reamplification of the unbound fraction. Probes were checked for depletion of repeats by hybridization to chromosomes without Cot-1 DNA. Results showed hybridization patterns comparable to those achieved with untreated probes hybridized with Cot-1 DNA. Received: 21 January 1997 / Accepted: 2 April 1997  相似文献   

20.
The presence of repeated elements in restriction fragments used as hybridization probes for chromosomal walking poses a major obstacle to the success of this gene-cloning strategy. This report describes a simple and rapid means of identifying restriction fragments devoid of repeated sequences and therefore useful as hybridization probes for chromosomal walking. Restriction fragments derived from a genomic DNA clone are Southern blotted and hybridized to nick-translated total genomic [32P]DNA. Fragments of the genomic clone that contain high abundance sequences (i.e., repeated elements) hybridize strongly to their nick-translated counterparts, which, due to their high copy number, comprise a significant proportion of the total genomic DNA probe. Conversely, fragments containing single-copy or low-abundance sequences do not hybridize, as their nick-translated counterparts are poorly represented in the total genomic DNA probe. These latter fragments, by virtue of their low-abundance sequences, are well suited as probes for chromosomal walking. Ensuring the absence of repeated elements in restriction fragments prior to their purification and utilization as chromosomal walking probes results in marked savings of time, effort and materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号