首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coxsackievirus B3 (CVB3) infections induce myocarditis in humans and mice. Little is known about the molecular characteristics of CVB3 that activate the cellular immunity responsible for cardiac inflammation. Previous experiments have identified an antibody escape mutant (H310A1) of a myocarditic variant of CVB3 (H3) that attenuates the myocarditic potential of the virus in mice in spite of ongoing viral replication in the heart. We have cloned full-length infectious cDNA copies of the viral genome of both the wild-type myocarditic H3 variant of CVB3 and the antibody escape mutant H310A1. Progeny viruses maintained the myocarditic and attenuated myocarditic potential of the parent viruses, H3 and H310A1. The full sequence of the H3 viral cDNA is reported and compared with those of previously published CVB3 variants. Comparison of the full sequences of H3 and H310A1 viruses identified a single nonconserved mutation (A to G) in the P1 polyprotein region at nucleotide 1442 resulting in an asparagine-to-aspartate mutation in amino acid 165 of VP2. This mutation is in a region that corresponds to the puff region of VP2. Nucleotide 1442 of the H3 and H310A1 cDNA copies of the viral genome was mutated to change amino acid 165 of VP2 to aspartate and asparagine, respectively. The presence of asparagine at amino acid 165 of VP2 is associated with the myocarditic phenotype, while an aspartate at the same site reduces the myocarditic potential of the virus. In addition, high-level production of tumor necrosis factor alpha by infected BALB/c monocytes is associated with asparagine at amino acid 165 of VP2 as has been previously demonstrated for the H3 virus. These findings identify potentially important differences between the H3 variant of CVB3 and other previously published CVB3 variants. In addition, the data demonstrate that a point mutation in the puff region of VP2 can markedly alter the ability of CVB3 to induce myocarditis in mice and tumor necrosis factor alpha secretion from infected BALB/c monocytes.  相似文献   

2.
Coxsackievirus B3 (CVB3) is a principal viral cause of acute myocarditis in humans and has been implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, it has been demonstrated elsewhere that, for several wild-type CB3 strains, the primary molecular determinant of cardiovirulence phenotype localizes to the 5′ nontranslated region (5′NTR) and capsid. Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA–RNA and RNA–protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on one most frequently occurring family of tetraloop sequences, namely, the GNRA sequence, especially the GNAA sequence conserved in all enteroviruses. Here in this study, through construction of CVB3 chimeric mutants, the predicted stem loop (SL) V within the 5′NTR has been identified as important in determining viral cardiovirulence. Replication assays in HeLa cell monolayers revealed that wild-type CVB3 virus and two of the six mutants constructed here grow efficiently, whereas other mutant viruses replicate poorly. Furthermore, the in vitro translation products from these mutants and wild-type CVB3, demonstrated that the two mutants who replicate efficiently, translated at relatively equivalent amount than the wild-type. However, other mutants demonstrated a low efficiency in their production of protein when translated in a Rabbit Reticulocytes Lysats.  相似文献   

3.
Two variants of coxsackievirus B3 (CVB3) were compared with the original myocarditic parent variant (CVB3m) for myocarditic properties in several strains of mice. The ts1R variant produced little to no myocarditis in any of the nine mouse strains examined. The ts10R variant and CVB3m could be differentiated on the basis of the extent of myocarditis induced in mice of selected H-2b and H-2k haplotypes and in the female versus the male responses of two other inbred strains. Virus quantities recovered from the hearts of myocarditic mice did not correlate with the extent of disease. The three variants could not be differentiated on the basis of: (i) rate and extent of adsorption to heart tissue homogenates, (ii) kinetic neutralization rates with antiserum directed against CVB3m, (iii) 125I labeling of surface regions of polypeptides on purified particles, or (iv) rates of heat inactivation of infectivity at 50 degrees C. These data suggest that differences in pathogenicity cannot be attributed to major alterations in capsid polypeptides. Oligonucleotide fingerprint maps of T1 RNase digests of the genomes of purified particles of the three CVB3 variants showed distinct differences. Thus, the extent of myocarditis induced by CVB3 variants in a mouse model is affected by some subtle expression of the genome, presumably not involving capsid polypeptides, as well as by the haplotype and sex of a given mouse host species.  相似文献   

4.
Ten antibody escape mutants of coxsackievirus B3 (CVB3) were used to identify nucleotide substitutions that determine viral virulence for the heart and pancreas. The P1 region, encoding the structural genes of each mutant, was sequenced to identify mutations associated with the lack of neutralization. Eight mutants were found to have a lysine-to arginine mutation in the puff region of VP2, while two had a glutamate-to-glycine substitution in the knob of VP3. Two mutants, EM1 and EM10, representing each of these mutations, were further analyzed, initially by determining their entire sequence. In addition to the mutations in P1, EM1 was found to have two mutations in the 3D polymerase, while EM10 had a mutation in stem-loop II of the 5' nontranslated region (5'NTR). The pathogenesis of the mutants relative to that of CVB3 strain RK [CVB3(RK)] then was examined in A/J mice. Both mutants were found to be less cardiotropic than the parental strain, with a 40-fold (EM1) or a 100- to 1,000-fold (EM10) reduction in viral titers in the heart relative to the titers of CVB3(RK). The mutations in VP2, VP3, and the 5'NTR were introduced independently into the RK infectious clone, and the phenotypes of the progeny viruses were determined. The results substantiated that the VP2 and VP3 mutations reduced cardiovirulence, while the 5'NTR mutation in EM10 was associated with a more virulent phenotype when expressed on its own. Stereographic imaging of the two mutations in the capsomer showed that they lie in close proximity on either side of a narrow cleft between the puff and the knob, forming a conformational epitope that is part of the putative binding site for coreceptor DAF.  相似文献   

5.
Coxsackievirus B3 (CVB3) is a picornavirus which causes myocarditis and pancreatitis and may play a role in type I diabetes. The viral genome is a single 7,400-nucleotide polyadenylated RNA encoding 11 proteins in a single open reading frame. The 5' end of the viral genome contains a highly structured nontranslated region (5'NTR) which folds to form an internal ribosome entry site (IRES) as well as structures responsible for genome replication, both of which are critical for virulence. A structural model of the CVB3 5'NTR, generated primarily by comparative sequence analysis and energy minimization, shows seven domains (I to VII). While this model provides a preliminary basis for structural analysis, the model lacks comprehensive experimental validation. Here we provide experimental evidence from chemical modification analysis to determine the structure of the CVB3 5'NTR. Chemical probing results show that the theoretical model for the CVB3 5'NTR is largely, but not completely, supported experimentally. In combination with our chemical probing data, we have used the RNASTRUCTURE algorithm and sequence comparison of 105 enterovirus sequences to provide evidence for novel secondary and tertiary interactions. A comprehensive examination of secondary structure is discussed, along with new evidence for tertiary interactions. These include a loop E motif in domain III and a long-range pairing interaction that links domain II to domain V. The results of our work provide mechanistic insight into key functional elements in the cloverleaf and IRES, thereby establishing a base of structural information from which to interpret experiments with CVB3 and other picornaviruses.  相似文献   

6.
Background: Coxsackievirus B3 (CVB3) causes myocarditis in the SWR (H2q) mouse model and persistence of CVB3 in myocardium disposes to the development of dilated cardiomyopathy. An attenuated strain of CVB3 has been isolated, sequenced and several candidate mutations for attenuation identified. Derivation of a revertant to cardiovirulence allows the significance of these mutations to be assessed.Objectives: To ascertain which candidate mutation(s) determine(s) the attenuated phenotype.Study design: A revertant to cardiovirulence was isolated following passage through severe combined immunodeficient disease (SCID) mouse heart. The 5′-non-translated region (NTR) and region coding for capsid proteins were sequenced and compared to the wildtype and attenuant.Results: There are five candidates for attenuation: (1) A–G at base 580 in the 5′-NTR; (2) A–T at base 690 in the 5′-NTR; (3) CG–GC at bases 1401/2 (Thr to Ser at amino acid 151 in VP2); (4) AA–GT at bases 2691/2 (Lys to Ser at amino acid 80 in VP1); (5) A–G at base 2916 (Asp to Gly at amino acid 155 in VP1). It was shown previously that mutations at 580, 690 and 2691/2 are not important in attenuation. Additionally, there are three novel mutations in the coding region of the revertant and one in the 5′-NTR which are unlikely to be relevant for attenuation as they are not present in the attenuant. Of nucleotide changes seen at 1401/2 and 2916 in the attenuant, only 2916 reverts to the wildtype sequence and so is a strong candidate for a determinant of attenuation.Conclusions: The A–G mutation at 2916 (Asp to Gly at amino acid 155 in VP1) is a strong candidate for attenuation. It is located at the top of the receptor binding cleft and mutation of the Asp to a Gly may destabilise the receptor binding site.  相似文献   

7.
The enterovirus 5' nontranslated region (NTR) contains an internal ribosome entry site (IRES), which facilitates translation initiation of the viral open reading frame in a 5' (m(7)GpppN) cap-independent manner, and cis-acting signals for positive-strand RNA replication. For several enteroviruses, the 5' NTR has been shown to determine the virulence phenotype. We have constructed a chimera consisting of the putative IRES element from the Travis strain of echovirus 12 (ECV12), a wild-type, relatively nonvirulent human enterovirus, exchanged with the homologous region of a full-length infectious clone of coxsackievirus B3 (CBV3). The resulting chimera, known as ECV12(5'NTR)CBV3, replicates similarly to CBV3 in human and simian cell lines yet, unlike CBV3, is completely restricted for growth on two primary murine cell lines at 37 degrees C. By utilizing a reverse-genetics approach, the growth restriction phenotype was localized to the predicted stem-loop II within the IRES of ECV12. In addition, a revertant of ECV12(5'NTR)CBV3 was isolated which possessed three transition mutations and had restored capability for replication in the utilized murine cell lines. Assays for cardiovirulence indicated that the ECV12 IRES is responsible for a noncardiovirulent phenotype in a murine model for acute myocarditis. The results indicate that the 5' NTRs of ECV12 and CBV3 exhibit variable intracellular requirements for function and serve as secondary determinants of tissue or species tropism.  相似文献   

8.
The coxsackieviruses type B3 (CVB3) are members of the genus Enterovirus of the family Picornaviridae. They are the commonest cause of chronic myocarditis and dilated cardiomyopathy. However, there is still no effective method for diagnosing CVB3 infection in humans. Here, a fast and accurate system that uses a capsid‐protein‐specific peptide sequence to detect CVB3 in the sera of patients with viral myocarditis was established. The peptide sequence was selected from the whole CVB3 capsid protein sequence by computationally predicting fragments with high antigenicity and low hydrophobicity. Two of eight possible peptide sequences were selected and commercially synthesized. The synthesized peptides encoded either the VP2 or VP1 capsid protein and induced immunoglobulin G antibody expression in immunized rabbits. Anti‐VP2 and anti‐VP1 sera detected the viral proteins extracted from CVB3‐infected HeLa cells. The newly synthesized peptides successfully induced antibody production. These peptides, applied in an ELISA system, detected anti‐CVB3 antibodies in virus‐infected mouse serum. Moreover, an ELISA system based on the VP2 peptide detected CVB3 infection in patients with positively identified CVB3‐induced fulminant myocarditis. These results indicate that these new peptides specifically interact with anti‐CVB3 IgG antibodies in mouse and human sera. This ELISA system should be useful for the clinical diagnosis of enterovirus‐induced myocarditis.  相似文献   

9.
Murine natural killer cells limit coxsackievirus B3 replication   总被引:10,自引:0,他引:10  
Previous indirect evidence suggested that natural killer (NK) cells play a role in coxsackie virus B3 serotype 3, myocarditic variant (CVB3m)-induced myocarditis by limiting virus replication. In this study, we present direct evidence that NK cells can limit CVB3m replication both in vitro and in vivo. Virus titers are lowered in primary murine neonatal skin fibroblast (MNSF) cultures incubated with activated splenic large granular lymphocytes (LGL) taken from mice 3 days postinoculation of CVB3m, a time of maximal NK cell activity. The antiviral effect of this cell population is diminished by complement-mediated lysis with the use of anti-asialo GM1 antiserum but not with anti-Lyt-2 monoclonal antibody. Neither interferon nor anti-CVB3m-neutralizing antibody was detected in these cultures. Although activated LGL initiate lysis within CVB3m-infected MNSF in vitro within 3 hr of addition, they do not lyse uninfected MNSF cultures. CVB3m replication is required for expression of surface changes on MNSF that result in lysis by NK cells because cell cultures treated with compounds that prevent CVB3m replication are not killed by LGL. LGL also do not lyse MNSF cultures inoculated with UV-inactivated virus. Mice inoculated with activated LGL and subsequently challenged with CVB3m had reduced titers of virus in heart tissues in comparison to titers of CVB3m in heart tissues of mice not given LGL. The antiviral activity of the LGL preparation was abolished by prior treatment with anti-asialo GM1 antiserum plus complement but not by prior treatment with anti-Lyt-2 monoclonal antibody and complement. These data suggest that NK cells can specifically limit a nonenveloped virus infection by killing virus-infected cells.  相似文献   

10.
The secondary structures predicted for the enteroviral 3' nontranslated region (3'NTR) all seem to indicate a conformation consisting of two (X and Y) hairpin structures. The higher-order RNA structure of the 3'NTR appears to exist as an intramolecular kissing interaction between the loops of these two hairpin structures. The enterovirus B-like subgroup possesses an additional stem-loop structure, domain Z, which is not present in the poliovirus-like enteroviruses. It has been suggested that the Z domain originated from a burst of short sequence repetitions (E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V. I. Agol, Nucleic Acids Res. 20:1739-1745, 1992). However, no functional features have yet been ascribed to this enterovirus B-like-specific RNA element in the 3'NTR. In this study, we tested the functional characteristics and biological significance of domain Z. A mutant of the cardiovirulent coxsackievirus group B3 strain Nancy which completely lacked the Z domain and which therefore acquired enterovirus C-like secondary structures exhibited a wild-type growth phenotype, as determined by single-cycle growth analysis with BGM cells. This result proves that the Z domain is virtually dispensable for viral growth in tissue cultures. Partial distortion of the Z domain structure resulted in a disabled virus with reduced growth kinetics, probably due to alternative conformations of the overall structure of the domain. Infection of mice showed that the recombinant coxsackievirus group B3 mutant which completely lacked the Z domain was less virulent. Pancreatic tissues from mice infected with wild-type virus and recombinant virus were equally affected. However, the heart tissue from mice infected with the recombinant virus showed only slight signs of myocarditis. These results suggest that the enterovirus B-like-specific Z domain plays a role in coxsackievirus-induced pathogenesis.  相似文献   

11.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

12.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

13.
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5′ untranslated region (5′UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA–protein and RNA–RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5′ and 3′UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.  相似文献   

14.
The purpose of the present work was to determine whether dietary selenium (Se) deficiency could influence the injurious effect of human viruses other than Coxsackie virus B3 (CVB3) on mouse heart. Weanling C3H/HeN mice were fed a Se-deficient or Se-adequate diet for 4 wk and then were inoculated intraperitoneally with one of the following viruses: Coxsackie virus B1 (CVB1), echovirus 9 (EV9), Coxsackie virus A9 (CVA9), or herpes simplex 1 (HSV1). Polio virus 1 (PV1) was employed as a negative control. Prior to inoculation, mean serum Se levels were 430 versus 61 ng/mL in adequate versus deficient mice, respectively. Ten days later, hearts were removed and processed by routine histological procedures. Cardiac lesions were scored according to the number and size of myocarditic foci. Significantly greater heart damage resulting from CVB1 and EV9 was observed in Se-deficient than in Se-adequate mice, and the Se status had no influence on CVA9-induced myocarditis. In contrast, heart damage caused by HSV1 was significantly milder in Se-deficient than in Se-adequate mice. Therefore, it may be concluded that the Se status of the murine host selectively influences the degree of viral-induced myocarditic lesions.  相似文献   

15.
The role of natural killer cells in the temporal development of coxsackievirus B3-induced myocarditis in adolescent CD-1 male mice was examined. Inoculation of purified CVB3m induced maximum NK cell activity in the splenic populations at 3 days postinoculation (p.i.) as assessed by lysis of YAC-1 cells; maximum virus titers in heart tissues were also found at day 3 p.i. Mice depleted of NK cells after injection of anti-asialo GM1 antiserum i.v. had decreased NK cell activity, increased CVB3m titers in heart tissues, and exacerbated myocarditis. Although lesion number was not increased in heart tissues of the latter mice, lesions in these mice exhibited increased myocyte degeneration and dystrophic calcification above that found in lesions of mice inoculated with CVB3m only. No alteration in interferon titers were observed in CVB3m-infected mice treated with anti-asialo GM1 antiserum as compared with normal CVB3m-infected mice. Measurements of splenic NK cell activity in mice inoculated with doses of 10(2) to 10(8) PFU of CVB3m per mouse or UV-irradiated virus suggest that replication of CVB3m is required for NK cell activation. An amyocarditic variant of CVB3m (ts5R) was shown to replicate in heart tissues and to elicit NK cell activity comparable to that elicited by CVB3m. Therefore, the data suggest that NK cell activation depends on virus replication and that these cells provide some protection against CVB3m-induced myocarditis by limiting virus replication in heart tissues.  相似文献   

16.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性  相似文献   

17.
Two variants of coxsackievirus B3 (CVB3) which differ dramatically in the ability to induce myocarditis in BALB/c mice were studied. H3 virus infection of murine monocytes in vitro resulted in release of concentrations of interleukin 1 (IL-1) and alpha/beta interferon that were high compared with those of cells infected with the H310A1 virus variant. In vivo, H3 virus infection caused substantial inflammatory cell infiltration of the myocardium, and lymphocytes from these animals gave predominantly Th1-cell responses to either whole H3 virus or overlapping peptides of the CVB3 vp1 capsid protein, as determined by IL-2 production. In contrast, H310A1 virus infection produced minimal myocarditis and Th1-cell responses, but Th2-cell activation was more pronounced than in H3 virus-infected mice (as determined by IL-4 concentrations). Exogenous treatment of H310A1 virus-infected mice with either IL-1 or IL-2 restored both myocarditis susceptibility and Th1-cell responses to whole virus and vp1 peptides. Furthermore, H310A1 virus-infected mice given exogenous IL-1 showed substantial in situ IL-2 deposition in the myocardium. These results indicate that CVB3-induced myocarditis may depend upon release of specific cytokines during infection and that activation of Th1 cells may be an important factor in pathogenesis.  相似文献   

18.
19.
A major determinant of neurovirulence for the GDVII strain of Theiler's virus, a murine picornavirus, was mapped to the P1 capsid protein region. Chimeric viruses were constructed by using sequences from the 5' noncoding and P1 regions of the virulent GDVII strain to replace equivalent regions of the less virulent BeAn strain. Neurovirulence in mice progressively increased as larger regions of BeAn capsid protein-encoding sequences were replaced. The in vitro growth characteristics of the chimeras showed that some chimeras were growth delayed in BHK-21 cells even though the viral constructs exhibited larger plaque sizes, were less temperature sensitive, and were more thermally stable than BeAn. Examination of assembly intermediates revealed an altered pentamer conformation and delayed empty capsid formation for the growth-compromised viruses. For these constructs, their chimeric nature inadvertently resulted in virion assembly defects that complicated finer-scale mapping of the determinants of virulence within the capsid region. These results demonstrate the importance of determining in vitro growth characteristics of chimeras to correctly decipher the significance of their phenotypes. VP1 does not contain a complete determinate for virulence because a chimera with VP1-encoding sequences from GDVII in an otherwise BeAn virus has an attenuated phenotype but is not growth compromised in vitro. The source of sequences, BeAn or GDVII, in the 5' noncoding region had only slight effects on the virulence of recombinant constructs.  相似文献   

20.
Previously, we described a heart-reactive monoclonal antibody (MAb), 10A1, derived from a coxsackievirus B3 (CVB3)-infected mouse. This MAb selectively inhibits infection of HeLa cells and myocytes with the myocarditic virus variant (CVB3W). A plaque-purified variant (H3) of CVB3W was isolated from the heart of an infected animal, and a second virus (H3-10A1) was obtained by growing H3 in HeLa cells in the presence of MAb 10A1. As with the parental CVB3W virus, H3 infection of HeLa cells can be inhibited by MAb 10A1, but the antibody-selected H3-10A1 variant is resistant to MAb inhibition (presumably an escape mutant). BALB/c mice infected with 10(6) PFU of CVB3W, H3, or H3-10A1 resulted in approximately 90% animal mortality with CVB3W or H3 and less than 10% mortality with H3-10A1, suggesting that the escape mutant is less pathogenic. Additionally, hearts from animals infected with H3-10A1 demonstrated only half the amount of myocarditis observed in either CVB3W- or H3-infected mice. Cardiac virus titers were also reduced approximately 200-fold in H3-10A1-infected animals compared with those in mice given the pathogenic variants. In vitro studies indicate that H3-10A1 is less effective in inhibiting cellular RNA and protein synthesis and show reduced virus replication compared with that of pathogenic viruses in cultured myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号