首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

2.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

3.
以中国科学院新疆巴音布鲁克草原生态站为依托,于2010年5月—2011年10月利用静态箱-气相色谱法对短期禁牧(2005年围封)、长期禁牧(1984年围封)和自由放牧(冬季放牧)3种草地的CO2、CH4、N2O气体通量进行了野外连续试验研究。结果表明:新疆天山高寒草原对CO2,CH4和N2O通量表现出明显的季节排放特点。在植物的生长季(5—10月),新疆天山高寒短期禁牧、长期禁牧和自由放牧草原的CO2通量平均值分别为:(89.8±49.3)、(52.8±28.7)、(57.0±30.7)mg·m-2·h-1,CH4通量平均值分别为:(-66.3±21.3)、(-104.5±32.8)、(-103.0±39.0)μg·m-2·h-1,N2O通量平均值分别为:(21.2±11.8)、(13.6±6.9)、(13.2±6.2)μg·m-2·h-1;短期禁牧草原与长期禁牧和自由放牧草原CH4平均通量具有显著性差异(P0.05),但CO2和N2O差异不显著(P0.05)。在植物的非生长季(11月—翌年4月),新疆天山高寒短期禁牧、长期禁牧以及自由放牧草原的3种温室气体的通量较低且差异均不显著。  相似文献   

4.
Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.  相似文献   

5.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large‐scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought‐induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity‐based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2.  相似文献   

6.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5‐year, large‐scale (1 ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH4 increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot. No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO2 efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6‐year period was on soil aeration conditions that transiently affected CH4, N2O, and NO production and consumption.  相似文献   

7.
Climate change will likelyresult in warmer winter temperatures leading toless snowfall in temperate forests. Thesechanges may lead to increases in soil freezingbecause of lack of an insulating snow cover andchanges in soil water dynamics during theimportant snowmelt period. In this study, wemanipulated snow depth by removing snow for twowinters, simulating the late development of thesnowpack as may occur with global warming, toexplore the relationships between snow depth,soil freezing, soil moisture, and infiltration.We established four sites, each with two pairedplots, at the Hubbard Brook Experimental Forest(HBEF) in New Hampshire, U.S.A. and instrumentedall eight plots with soil and snow thermistors,frost tubes, soil moisture probes, and soillysimeters. For two winters, we removed snowfrom the designated treatment plots untilFebruary. Snow in the reference plots wasundisturbed. The treatment winters (1997/1998 and1998/1999) were relatively mild, withtemperatures above the seasonal norm and snowdepths below average. Results show the treatedplots accumulated significantly less snow andhad more extensive soil frost than referenceplots. Snow depth was a strong regulator ofsoil temperature and frost depth at all sites.Soil moisture measured by time domainreflectometry probes and leaching volumescollected in lysimeters were lower in thetreatment plots in March and April compared tothe rest of the year. The ratio of leachatevolumes collected in the treatment plots tothat in the reference plots decreased as thesnow ablation seasons progressed. Our data showthat even mild winters with low snowfall,simulated by snow removal, will result inincreased soil freezing in the forests at theHBEF. Our results suggest that a climate shifttoward less snowfall or a shorter duration ofsnow on the ground will produce increases insoil freezing in northern hardwood forests.Increases in soil freezing will haveimplications for changes in soil biogeochemicalprocesses.  相似文献   

8.
The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen losses from soil during the following growing season. Decreased nitrogen retention is thought to be due to reduced root uptake, but has not yet been measured directly. We conducted a 2‐year snow‐removal experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to determine the effects of soil freezing on root uptake and leaching of inorganic nitrogen simultaneously. Snow removal significantly increased the depth of maximal soil frost by 37.2 and 39.5 cm in the first and second winters, respectively (< 0.001 in 2008/2009 and 2009/2010). As a consequence of soil freezing, root uptake of ammonium declined significantly during the first and second growing seasons after snow removal (= 0.023 for 2009 and = 0.005 for 2010). These observed reductions in root nitrogen uptake coincided with significant increases in soil solution concentrations of ammonium in the Oa horizon (= 0.001 for 2009 and 2010) and nitrate in the B horizon (< 0.001 and = 0.003 for 2009 and 2010, respectively). The excess flux of dissolved inorganic nitrogen from the Oa horizon that was attributable to soil freezing was 7.0 and 2.8 kg N ha?1 in 2009 and 2010, respectively. The excess flux of dissolved inorganic nitrogen from the B horizon was lower, amounting to 1.7 and 0.7 kg N ha?1 in 2009 and 2010, respectively. Results of this study provide direct evidence that soil freezing reduces root nitrogen uptake, demonstrating that the effects of winter climate change on root function has significant consequences for nitrogen retention and loss in forest ecosystems.  相似文献   

9.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

10.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

11.
This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4, and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P < 0.001) correlated with water table: a negative correlation at the ridge and transition locations, but a positive correlation at the permanently flooded swamp location. Both soil gas profile analysis and surface gas flux measurements indicated that the ridge and transition locations could be a sink of atmospheric CH4, especially in warm seasons, but generally functioned as a minor source of CH4 in cool seasons. The swamp location was a major source of CH4, and the emission rate was higher in the warm seasons (mean 28 and median 23 mg m?2 h?1) than in the cool seasons (both mean and median 13 mg m?2 h?1). Average CO2 emission rate was 251, 380 and 52 mg m?2 h?1 for the ridge, transition and swamp location, respectively. At each location, higher CO2 emission rates were also found in the warm seasons. The lowest CO2 emission rate was found at the swamp location, where soil C content was the highest, due to less microbial biomass, less CO2 production in such an anaerobic environment, and greater difficulty of CO2 diffusion to the atmosphere. Cumulative global warming potential emission from these three greenhouse gases was in an order of swamp > transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission.  相似文献   

12.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

13.
Singh  J.S.  Singh  Smita  Raghubanshi  A.S.  Singh  Saranath  Kashyap  A.K.  Reddy  V.S. 《Plant and Soil》1997,196(1):115-121
Methane uptake was measured for two consecutive years for four forest and one savanna sites in a seasonally dry tropical region of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of the soil. There were significant differences in CH4 consumption rates during the two years (mean 0.43 and 0.49 mg m-2 h-1), and at different sites (mean 0.36 to 0.57 mg m-2 h-1). The mean uptake rate was higher (P < 0.05) in dry seasons than in the rainy season at all the sites. There was a significant season and site interaction, indicating that the effect of different seasons differed across the sites. There was a positive relation between soil moisture and CH4 uptake rates during summer (the driest period) and a negative relation during the rest of the year. The results suggested that seasonally dry tropical forests are a strong sink for CH4, and C and N status of soils regulates the strength of the sink in the long term.  相似文献   

14.
The possibility of carbon (C) being locked away from the atmosphere for millennia is given in hydromorphic soils. However, the water-table-dependent feedback from soil organic matter (SOM) decomposition to the climate system is less clear. At least three greenhouse gases are produced: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases show emission peaks at different water table positions and have different global warming potentials (GWP), for example a factor of 23 for CH4 and 296 for N2O as compared with the equivalent mass of CO2 on a 100-year time horizon. This review of available annual data on all three gases revealed that the radiative forcing effect of SOM decomposition is principally dictated by CO2 despite its low GWP. Anaerobic SOM decomposition generally has a lower potential feedback to the climatic system than aerobic SOM decomposition. Concrete values are constrained by a lack of data from tropical and subarctic regions. Furthermore, data on N2O and on plant effects are generally rare. However, there is a clear latitudinal differentiation for the GWP of soils under anaerobic conditions compared with aerobic conditions when looking at CO2 and CH4: in the tropical and temperate regions, the anaerobic GWP showed a range of 25–60% of the aerobic value, but values varied between 80% and 110% in the boreal zone. Hence, particularly in the vulnerable boreal zone, the feedback from ecosystems to climate change will highly depend on plant responses to changing water tables at elevated temperatures.  相似文献   

15.
施氮和降水格局改变对土壤CH4和CO2通量的影响   总被引:1,自引:0,他引:1  
李伟  白娥  李善龙  孙建飞  彭勃  姜萍 《生态学杂志》2013,32(8):1947-1958
氮沉降增加和降水格局改变是全球变化的两项重要内容,但是同时考虑上述两因素对温室气体CH4和CO2通量影响的原位双因子模拟研究还相当有限.本研究以长白山温带阔叶红松林土壤为研究对象,采用静态箱法研究了外施氮源(50 kg N·hm-2·a-1)和增减30%降水对土壤CH4和CO2通量的影响.结果表明:施氮能抑制土壤CH4吸收,有时甚至能将土壤对CH4的吸收转为释放,但这种抑制效应只能维持5d左右,且能在一定程度上改变CH4通量和环境因子(温度、土壤pH、粘粒含量)的相关关系.降水改变未能显著影响土壤CH4通量.对CO2通量而言,施氮能降低土壤CO2排放,长白山阔叶红松林连续施氮第4年的平均抑制效应为27.4%.长期连续施氮的平均抑制效应随施氮时间延长而逐渐增大,一定年限后达到最大值.单次施氮的抑制效应随时间延长逐渐减弱,并在1个月的施氮周期末期基本消失.施氮的抑制效应和土壤充水孔隙度(WFPS)呈显著负相关关系,且升温能增强施氮对CO2释放的抑制效应并延长抑制时间.施氮、降水有可能改变土壤呼吸的温度敏感性.本研究表明,长白山森林土壤氮素尚未达到一定阈值,未来氮沉降增加将抑制CO2的释放和CH4的吸收,因此总体来看施氮抑制土壤碳排放.  相似文献   

16.
Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4) in boreal peatlands. In this study, we investigated the short‐term (1–3 years) vs. long‐term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004–2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation‐mediated effects on CH4 exchange.  相似文献   

17.
Phenology of a northern hardwood forest canopy   总被引:4,自引:0,他引:4  
While commonplace in other parts of the world, long‐term and ongoing observations of the phenology of native tree species are rare in North America. We use 14 years of field survey data from the Hubbard Brook Experimental Forest to fit simple models of canopy phenology for three northern hardwood species, sugar maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). These models are then run with historical meteorological data to investigate potential climate change effects on phenology. Development and senescence are quantified using an index that ranges from 0 (dormant, no leaves) to 4 (full, green canopy). Sugar maple is the first species to leaf out in the spring, whereas American beech is the last species to drop its leaves in the fall. Across an elevational range from 250 to 825 m ASL, the onset of spring is delayed by 2.7±0.4 days for every 100 m increase in elevation, which is in reasonable agreement with Hopkin's law. More than 90% of the variation in spring canopy development, and just slightly less than 90% of the variation in autumn canopy senescence, is accounted for by a logistic model based on accumulated degree‐days. However, degree‐day based models fit to Hubbard Brook data appear to overestimate the rate at which spring development occurs at the more southerly Harvard Forest. Autumn senescence at the Harvard Forest can be predicted with reasonable accuracy in sugar maple but not American beech. Retrospective modeling using five decades (1957–2004) of Hubbard Brook daily mean temperature data suggests significant trends (P≤0.05) towards an earlier spring (e.g. sugar maple, rate of change=0.18 days earlier/yr), consistent with other studies documenting measurable climate change effects on the onset of spring in both North America and Europe. Our results also suggest that green canopy duration has increased by about 10 days (e.g. sugar maple, rate of change=0.21 days longer/yr) over the period of study.  相似文献   

18.
Recent anthropogenic emissions of key atmospheric trace gases (e.g. CO2 and CH4) which absorb infra-red radiation may lead to an increase in mean surface temperatures and potential changes in climate. Although sources of each gas have been evaluated independently, little attention has focused on potential interactions between gases which could influence emission rates. In the current experiment, the effect of enhanced CO2 (300 μL L–1 above ambient) and/or air temperature (4 °C above ambient) on methane generation and emission were determined for the irrigated tropical paddy rice system over 3 consecutive field seasons (1995 wet and dry seasons 1996 dry season). For all three seasons, elevated CO2 concentration resulted in a significant increase in dissolved soil methane relative to the ambient control. Consistent with the observed increases in soil methane, measurements of methane flux per unit surface area during the 1995 wet and 1996 dry seasons also showed a significant increase at elevated carbon dioxide concentration relative to the ambient CO2 condition (+49 and 60% for each season, respectively). Growth of rice at both increasing CO2 concentration and air temperature did not result in additional stimulation of either dissolved or emitted methane compared to growth at elevated CO2 alone. The observed increase in methane emissions were associated with a large, consistent, CO2-induced stimulation of root growth. Results from this experiment suggest that as atmospheric CO2 concentration increases, methane emissions from tropical paddy rice could increase above current projections.  相似文献   

19.
The effect of soil microbial processes on production and/or consumption of atmospheric trace gases was studied in four different soils which were preincubated in the presence of elevated concentrations of CH4, NH 4 + or CO, to simulate the growth of the resident populations of methanotrophic, nitrifying, or carboxydotrophic bacteria, respectively. Oxidation of CH4, both at atmospheric (1.8 ppmv) and at elevated (3500 ppmv) CH4 mixing ratios, was stimulated after preincubation with CH4, but not with NH 4 + or CO, indicating that CH4 was oxidized by methanotrophic, but not by nitrifying or carboxydotrophic bacteria. However, the oxidation of CH4 was partially inhibited by addition of NH 4 + and CO. Analogously, oxidation of NH 4 + was partially inhibited by addition of CH4. Oxidation of CO at elevated mixing ratios (2300 ppmv) was stimulated after preincubation with CO, indicating oxidation by carboxydotrophs, but was also stimulated at a small extent after preincubation with CH4, suggesting the involvement of methanotrophs. At atmospheric CO mixing ratios (0.13 ppmv), on the other hand, oxidation of CO was stimulated after preincubation with NH 4 + , indicating that the activity was due to nitrifiers. NO uptake was stimulated in soils preincubated with CH4, indicating the involvement of methanotrophs. However, production of N2O was only stimulated, if CH4 was added as a substrate. The results indicate that especially the methanotrophic and nitrifying populations in soil not only oxidize their specific substrates, but are also involved in the metabolism of other compounds.  相似文献   

20.
While several studies have shown that the addition of animal manures to soil can increase N2O and CO2 emissions, limited information is available on the effect that manure physical characteristics can have on these emissions. This study compared N2O and CO2 emissions from poultry litter incorporated as pellets (5.5 mm OD, 7 mm long) or fine particles (<0.83 mm) into Cecil soil samples. The soil-litter mixture was packed in acrylic plastic cylinders and adjusted to 55 or 90 % water-filled porosity (WFP). The cylinders were placed inside jars that were sealed and placed in an incubator at 25°C for 35 d, with periodic air samplings conducted for N2O and CO2 analyses. At 55% WFP, cumulative emission of CO2 was similar for both litter types, but cumulative emission of N2O was slightly higher for pelletized (6.8 % of applied N) than for fine-particle litter (5.5 %). In contrast, at 90 % WFP, cumulative emission of N2O was larger for fine-particle litter (3.4 % of applied N) than for pelletized litter (1.5 %). These results indicate that the effect of poultry litter physical characteristics on N2O emissions from incorporated applications can be expected to vary depending on the soil water regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号