首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.  相似文献   

2.
CpG-ODN stimulates dendritic cells (DCs) to produce cytokines, which are important for pathogenesis of autoimmune disorders and vaccine strategy for cancer. CpG-ODN activates the TLR9/MyD88/TRAF6 cascade leading to activation of IKK-NF-κB and JNK, which are critical for production of pro-inflammatory cytokines. However, whether other molecules are involved in activation of CpG-ODN signaling is still not clear. Here we report that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is involved in this activation process. DNA-PKcs-deficient DCs exhibited a defect in the IL-6 and IL-12 response to CpG-ODN in a dose- and time- dependent manner. Loss of DNA-PKcs impaired phosphorylation of IKK, IκBα, NF-κB and JNK in response to CpG-ODN. Interestingly, CpG-ODN was able to bind DNA-PKcs and induce its association and co-localization with TRAF6 in the absence of TLR9. Our data suggest that DNA-PKcs is a player in CpG-ODN signaling and may explain why DNA-PKcs is implicated in the pathogenic process of autoimmune disease.  相似文献   

3.
Differences in components of innate anti-viral immune responses may account for the contrast in susceptibility to Theiler's murine encephalomyelitis virus (TMEV) between SJL/J and B10.S mice. Herein, the expression of IL-12, interferon (IFN)-beta, Toll-like receptors 3 (TLR3), TLR7, and mitogen-activated protein (MAP)-kinases was evaluated in SJL/J and B10.S macrophages infected with TMEV. Twenty-four hours after infection, SJL/J macrophages exhibited higher levels of TMEV RNA, IL-12 p40, and TLR3 but lower levels of IL-12 p70 and the IL-12 p35 subunit compared with B10.S macrophages. Addition of exogenous IL-12 p70 or IFN-beta increased the resistance of SJL/J macrophages to TMEV infection. To assess MAP-kinases, macrophages were pretreated with the p38 MAP-kinase inhibitor SB203580 or extracellular signal-regulated kinases (ERK) MAP-kinase inhibitor U0126 before TMEV infection. U0126 reduced SJL/J but increased B10.S macrophage expression of IL-12 p40 and p70 in response to TMEV. U0126 decreased the IL-12 p35 response of SJL/J macrophages. To assess TLR7, SJL/J and B10.S macrophages were stimulated with loxoribine, a TLR7 ligand. Loxoribine induced more IL-12 p70 production and p35 expression in B10.S than SJL/J macrophages. U0126 increased loxoribine-induced expression of IL-12 p40 and IL-12 p70 in B10.S but not SJL/J macrophages. Thus, differences in production of IL-12 p70 due to expression of the p35 subunit and in activity of TLR7, as well as activation of factors downstream of ERK MAP-kinases likely underlie the disparity in innate immunity between SJL/J and B10.S macrophages to TMEV.  相似文献   

4.
When macrophages phagocytose chitin (N-acetyl-d-glucosamine polymer) microparticles, mitogen-activated protein kinases (MAPK) are immediately activated, followed by the release of Th1 cytokines, but not IL-10. To determine whether phagocytosis and macrophage activation in response to chitin microparticles are dependent on membrane cholesterol, RAW264.7 macrophages were treated with methyl-beta-cytodextrin (MBCD) and stimulated with chitin. These results were compared with the corresponding effects of bacterial components including heat-killed (HK) Mycobacterium bovis bacillus Calmette-Guèrin (BCG) and an oligodeoxynucleotide (ODN) of bacterial DNA (CpG-ODN). The MBCD treatment did not alter chitin binding or the phagocytosis of chitin particles 20 min after stimulation. At the same time, however, chitin-induced phosphorylation of cellular MAPK was accelerated and enhanced in an MBCD dose-dependent manner. The increased phosphorylation was also observed for chitin phagosome-associated p38 and ERK1/2. In contrast, CpG-ODN and HK-BCG induced activation of MAPK in MBCD-treated cells at levels comparable to, or only slightly more than, those of control cells. We also found that MBCD treatment enhanced the production of tumor necrosis factor-alpha (TNF-alpha) and the expression of cyclooxygenase-2 (COX-2) in response to chitin microparticles. In neither MBCD- nor saline-treated macrophages, did chitin particles induce detectable IL-10 mRNA synthesis. CpG-ODN induced TNF-alpha production, and COX-2 expression were less sensitive to MBCD treatment. Among the agonists studied, our results indicate that macrophage activation by chitin microparticles was most sensitive to cholesterol depletion, suggesting that membrane structures integrated by cholesterol are important for physiological regulation of chitin microparticle-induced cellular activation.  相似文献   

5.
6.
Bacterial DNA activates the innate immune system via interactions with Toll-like receptor 9 (TLR9). This receptor recognizes CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the CpG dinucleotides in certain sequence contexts characterizing this DNA. Most studies have shown increased osteoclast differentiation by TLR ligands. We found that activation of TLRs (specifically TLR4 and TLR9) in early osteoclast precursors results in inhibition of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. Our objective is to identify the mechanism leading to this inhibitory effect of a TLR ligand. Since both RANKL-RANK and CpG-ODN-TLR9 interactions result in NF-kappaB activation, p38 and ERK phosphorylation, and TNF-alpha synthesis (all implicated in osteoclastogenesis), we hypothesized that CpG-ODN (but not RANKL) in addition induces the synthesis of an anti-osteoclastogenic factor. Control osteoclast precursors, and cells treated with RANKL, CpG-ODN, or their combination were studied using DNA arrays (GEArray Q Series Mouse NF-kappaB Signaling Pathway Gene Array, MM-016, SuperArray). We found a marked increase in the mRNA levels of the osteoclastogenesis inhibitor interleukin-12 (IL-12) in osteoclast precursors treated with CpG-ODN and CpG-ODN + RANKL. Northern and Western analyses, together with ELISA, confirmed the DNA array studies. In correlation with these findings, IL-12 inhibited RANKL-induced osteoclast differentiation and specific anti-IL-12-antibodies inhibited the anti-osteoclastogenic effect of CpG-ODN. In conclusion, activation of TLR9 by its ligand, CpG-ODN, results in synthesis and release of IL-12 opposing RANKL-induced osteoclast differentiation.  相似文献   

7.
Helicobacter hepaticus is an enterohepatic Helicobacter species that induces lower bowel inflammation in susceptible mouse strains, including those lacking the p50/p105 subunit of NF-kappaB. H. hepaticus-induced colitis is associated with elevated levels of IL-12 p40 expression, and p50/p105-deficient macrophages express higher levels of IL-12 p40 than wild-type macrophages after challenge with H. hepaticus. However, the molecular mechanisms by which the p50/p105 subunit of NF-kappaB suppresses IL-12 p40 expression have not yet been elucidated. In this study we have demonstrated that H. hepaticus challenge of macrophages induces ERK activation, and this event plays a critical role in inhibiting the ability of H. hepaticus to induce IL-12 p40. Activation of ERK requires both p50/p105 and the MAPK kinase kinase, Tpl-2. Inhibition of the induction of IL-12 p40 by ERK was independent of c-Rel, a known positive regulator of IL-12 p40. Instead, it was linked to the induction of c-Fos, a known inhibitor of IL-12 p40 expression. These results suggest that H. hepaticus induces ERK activation by a pathway dependent upon Tpl-2 and p105, and that activation of ERK inhibits the expression of IL-12 p40 by inducing c-Fos. Thus, a defect in ERK activation could play a pivotal role in the superinduction of IL-12 p40 observed after challenge of macrophages lacking the p50/p105 subunit of NF-kappaB with H. hepaticus.  相似文献   

8.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

9.
Delivering phosphodiester ONs (PO-ONs) remains an attractive but challenging goal in antisense therapy. Both in the literature and in our experiments, most cationic liposomes fail in generating an antisense effect with PO-ONs, while they succeed with chemically modified ONs such as phosphothioate ONs (PS-ONs). This work aims to explain the biological activity of PO- and PS-ONs delivered by DOTAP/DOPE liposomes based on a detailed understanding of their cell biological behavior by means of fluorescence correlation spectroscopy and confocal laser scanning microscopy. We conclude that DOTAP/DOPE liposomes are not suited to deliver PO-ONs due to the release of naked PO-ONs in the cytosol at the time of the endosomal escape of the liposomes and the subsequent rapid degradation of the naked PO-ONs. Carriers that would not release the PO-ONs upon endosomal escape but would continue to carry the PO-ONs until they arrive at the target mRNA could therefore be better suited to delivering PO-ONs. In the case of PS-ONs, the ONs are not degraded upon release at the time of the endosomal escape of the liposomes, creating a pool of intact, biologically active PS-ONs and thus making DOTAP/DOPE liposomes mainly suitable for delivering nuclease resistant ONs. However, the cells seemed to display an export pathway for removing intact PS-ONs from the cells, limiting the presence of naked PS-ONs in the nucleus to approximately 8 h following the delivery.  相似文献   

10.
The present study was undertaken to explore the role of interleukin-12 (IL-12) p40 in the expression of TNF-alpha in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-alpha and the expression of TNF-alpha mRNA in BV-2 microglial cells. In addition to BV-2 microglial cells, p70, p402 and p40 also induced the production of TNF-alpha in mouse primary microglia and peritoneal macrophages. As the activation of both NF-kappaB and CCAAT/enhancer binding protein beta (C/EBPbeta) is important for the expression of TNF-alpha in microglial cells, we investigated the effect of p40 on the activation of NF-kappaB as well as C/EBPbeta. Activation of NF-kappaB as well as C/EBPbeta by p40 and inhibition of p40-induced expression of TNF-alpha by Deltap65, a dominant-negative mutant of p65, and DeltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggests that p40 induces the expression of TNF-alpha through the activation of NF-kappaB and C/EBPbeta. In addition, we show that p40 induced the activation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Interestingly, PD98059, an inhibitor of ERK, inhibited p40-induced expression of TNF-alpha through the inhibition of C/EBPbeta, but not that of NF-kappaB, whereas SB203580, an inhibitor of p38 MAPK, inhibited p40-induced expression of TNF-alpha through the inhibition of both NF-kappaB and C/EBPbeta. This study delineates a novel biological function of p40 in inducing TNF-alpha in microglia and macrophages.  相似文献   

11.
12.
13.
14.
The mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and p38, are activated in response to infectious agents and innate immune stimulators such as CpG DNA, and regulate the subsequent initiation and termination of immune responses. CpG DNA activates p38 and ERK with slightly different kinetics in monocytic cells. The present studies investigated the roles of these two key mitogen-activated protein kinases in regulating the CpG DNA-induced production of pro- and anti-inflammatory cytokines in the macrophage-like cell line RAW264.7. p38 activity was essential for the induction of both IL-10 and IL-12 expression by CpG DNA. In contrast, CpG DNA-mediated ERK activation was shown to suppress IL-12 production, but to be essential for the CpG DNA-induced IL-10 production. Studies using rIL-10 and IL-10 gene-deficient mice demonstrated that the inhibitory effect of ERK on CpG DNA-mediated IL-12 production is indirect, due to the role of ERK in mediating IL-10 production. These results demonstrate that ERK and p38 differentially regulate the production of pro- and anti-inflammatory cytokines in APCs that have been activated by CpG DNA. CpG DNA-induced p38 activity is required for the resulting innate immune activation. In contrast, ERK plays a central negative regulatory role in the CpG DNA-mediated Th1 type response by promoting production of the Th2 type cytokine, IL-10.  相似文献   

15.
16.
LPS tolerance has been investigated extensively in monocytes/macrophages. However, the LPS restimulation studies are not well documented in dendritic cells (DCs). In the present study, we investigated influences of TLR restimulation using murine bone marrow-derived DCs. Purified bone marrow-derived DCs (>98% CD11c+ B220-) were stimulated with TLR4 and TLR2 ligands for 24 h and then cultured with medium alone for 48 h as a resting interval (TLR4,2-primed DCs). The TLR4-MD2 expression was markedly reduced immediately after the TLR stimulation, but was restored following the resting interval. The TLR4,2-primed DCs exhibited significantly enhanced IL-10 production, but markedly diminished IL-12p40 production upon TLR4 restimulation compared with naive (unprimed) DCs. TLR4-mediated activation of p38 MAPK was markedly suppressed, whereas that of ERK1/2 was enhanced in the TLR4,2-primed DCs compared with naive DCs. Blocking the activation of ERK1/2 with U0126 reduced the enhanced IL-10 production by the TLR4,2-primed DCs upon the TLR4 restimulation. The U0126 showed no significant effects on the IL-12p40 production. Thus, the enhanced ERK1/2 activation appears to be, at least in part, responsible for the enhanced IL-10 production in the TLR4,2-primed DCs. In addition, TNFR-associated factor 3 expression was significantly up-regulated in the TLR4,2-primed DCs compared with that in naive DCs. We demonstrated in this study that DCs primed with TLR4 and TLR2 ligands and rested for 48 h showed enhanced IL-10 production upon TLR4 restimulation. The enhanced IL-10 production by the TLR4,2-primed DCs may be attributed to the altered balance of intracellular signaling pathways via p38 MAPK, ERK1/2, and TNFR-associated factor 3 upon TLR restimulation.  相似文献   

17.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

18.
IL-12 is an important type 1 immune activation cytokine. It is known that macrophages and dendritic cells the major cell types producing this cytokine and that these cells may release both the biologically inactive form (IL-12p40) and active form (IL-12p70) of IL-12. In this review, the latest information regarding the regulatory mechanisms governing the production of IL-12p70 by these cells is evaluated.  相似文献   

19.
20.
A D Foey  M Feldmann  F M Brennan 《Cytokine》2001,16(4):131-142
Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced in the rheumatoid arthritis (RA) joint by macrophages/monocytes and infiltrating peripheral blood derived lymphocytes. Recent data suggest a role for physical cell-to-cell interactions in the production of IL-10. In this report, we have investigated the signalling mechanisms involved in IL-10 production by peripheral blood-derived macrophages upon interaction with fixed CD40L transfectants. IL-10 and tumour necrosis factor alpha (TNF-alpha) are produced by macrophage colony-stimulating factor (M-CSF)-primed monocytes/macrophages in response to CD40 ligation. The utilization of the inhibitors, wortmannin and LY294002, demonstrated a role for phosphatidylinositol 3-kinase (PI3K) whereas rapamycin demonstrated p70 S6-kinase (p70S6K) involvement in the production of IL-10 by these monocytes. The production of TNF-alpha was enhanced by wortmannin and LY294002, suggesting negative regulation by PI3K; however, it was dependent on p70S6K suggesting a PI3K-independent mechanism of p70S6K activation. One alternative pathway that activates p70S6K independently of PI3K and also differentiates between IL-10 and TNF-alpha is the p42/44 mitogen-activated protein kinase (MAPK), which regulates TNF-alpha production in a PI3K-independent manner. These observations suggest that CD40 ligation induces macrophage IL-10 and TNF-alpha production, the mechanism of which is p70S6K-dependent yet bifurcates at the level of PI3K and p42/44 MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号