首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and calcium ionophore A23187 on Ca2+ release from bovine adrenal medullary secretory vesicles and microsomes was examined. Ins(1,4,5)P3 released 3.5 nmol of Ca2+/mg protein from secretory vesicles and 1.5 nmol of Ca2+/mg protein from microsomes as measured by a Ca2(+)-selective electrode. However, A23187 promoted Ca2+ uptake into vesicles while releasing Ca2+ from microsomes. Ins(1,4,5)P3-induced Ca2+ release from secretory vesicles was rapid, but the released Ca2+ was absorbed within 3 min during which the Ins(1,4,5)P3-releasable pools were refilled. The in situ calcium content of secretory vesicle measured by atomic absorption spectrometry was 112 +/- 6.3 nmol/mg protein indicating the potential importance of secretory vesicles as an intracellular Ca2+ store. The high Ca2(+)-buffering capacity of secretory vesicles is presumed to be due to the high Ca2(+)-binding capacity of chromogranin A, the major intravesicular protein, which has calsequestrin-like properties.  相似文献   

2.
A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.  相似文献   

3.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

4.
Transport of Ca2+ in microsomal membrane vesicles of the Tetrahymena has been investigated using arsenazo III as a Ca2+ indicator. The microsomes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Muto, Y. and Nozawa, Y. (1984) Biochim. Biophys. Acta 777, 67-74) accumulated calcium upon addition of ATP and Ca2+ sequestered into microsomal vesicles was rapidly discharged by the Ca2+ ionophore A23187. Kinetic studies indicated that the apparent Km for free Ca2+ and ATP are 0.4 and 59 microM, respectively. The Vmax was about 40 nmol/mg protein per min at 37 degrees C. The calcium accumulated during ATP-dependent uptake was released after depletion of ATP in the incubation medium. Furthermore, addition of trifluoperazine which inhibited both (Ca2+ + Mg2+)-ATPase and ATP-dependent Ca2+ uptake rapidly released the calcium accumulated in the microsomal vesicles. These observations suggest that Tetrahymena microsome contains both abilities to take up and to release calcium and may act as a Ca2+-regulating site in this organism.  相似文献   

5.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

6.
A possible role of low pH in secretory vesicles for processing and secretion in the neurohypophysis was investigated. Subcellular fractionation of guinea-pig neural lobes revealed that a proton present in the membranes from this tissue could not be ascribed to secretory vesicles. However, a proton pump was found in coated microvesicles. Secretory vesicles isolated from rats and guinea pigs were stable under conditions known to lyse secretory vesicles from the adrenal medulla owing to the generation of a proton gradient. These results suggest that the internal pH of secretory vesicles from the neurohypophysis is closer to neutral than is the pH in chromaffin secretory vesicles. Processing of a neurophysin-glycopeptide intermediate from the biosynthesis of vasopressin in intact secretory vesicles incubated in vitro was activated by the addition of NH4Cl, known to increase the intravesicular pH. This activation of neurohormone processing was also apparent in isolated nerve endings incubated in the presence of NH4Cl, suggesting that NH4Cl can also be used to increase the intravesicular pH in intact nerve endings. However, NH4Cl did not affect the secretion of neurohormones, indicating that a low intravesicular pH is not important for exocytosis in the neurohypophysis. Our results indicate that a low pH generated during processing by mechanisms other than ATP-dependent proton transport may inhibit the processing enzymes, thereby preventing extensive breakdown of neurohormone precursors.  相似文献   

7.
Rat thymocytes incorporate large amounts of acridine orange at concentrations of approximately 10 microM in about 10 minutes at 37 degrees C. The addition of (NH4)2SO4 (at a final concentration of several mMolars) releases about 30% of the incorporated dye into the medium. The NH4+-releasable dye uptake is almost completely abolished by 20 minutes' incubation with 4 microM of the Ca++-ionophore A23187. Dye uptake is associated with an absorbance change at 492 mm and thus may be followed spectrophotometrically. However, NH4+ at the above concentrations or nigericin (0.5 mg/ml) completely annul this change in absorbance, indicating that it reflects only the accumulation of the dye within the acidic cellular compartments. In a Ca++-containing physiological saline, the addition of A23187 (at a final concentration of 8 microM) at the end of the dye uptake phase initiated a reversal in the absorbance change; in the absence of Ca++, reversal occurred at a much lower rate. Incubation of cells for 30 minutes with 2 microM A23187 in Ca++-containing saline completely abolished NH4+-sensitive dye uptake; less A23187 (0.5 microM) and like or a longer incubation period brought about a striking decrease in NH4+-sensitive dye uptake. Similar results were obtained with cells suspended in RPLM 1640 medium. In the absence of external Ca++, A23187 impaired cell capacity to incorporate dye in a delta pH-dependent manner, but a longer incubation time or higher concentrations of the ionophore were required to obtain a comparable effect. It is thus concluded that the ionophore dissipates intracellular pH gradients by an intracellular divalent cation (Ca++ or also Mg++)-H+ exchange.  相似文献   

8.
1. By using Ca-EGTA buffers, the Km for Ca2+ uptake into rat liver heavy microsomes (microsomal fraction) was found to be 0.2 microM free Ca2+. 2. In the absence of oxalate, these vesicles accumulate about 20 nmol of Ca2+/mg of protein. Efflux of Ca2+ from the vesicles is much faster at pH 7.6 than at pH 6.8, but does not apparently show saturation kinetics or any stringent requirement for external ions. 3. The steady-state distribution of Ca2+ between the microsomes and the medium in the presence of ATP and the absence of oxalate is dependent on Ca2+ load. When the vesicles are loaded to 50% capacity, the external free Ca2+ concentration is 70 nM. 4. The affinity of heavy microsomes for Ca2+ is such that is seems likely that they has a dominant role in the determination of cytoplasmic free Ca2+ concentrations.  相似文献   

9.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

10.
The Ca2+ ionophore X-537A is employed as a tool to distinguish between intravesicular Ca2+ and surface membrane-bound Ca2+ in sarcoplasmic reticulum isolated from rabbit skeletal muscle. When sarcoplasmic reticulum is incubated in 20 mM Ca2+ in the absence of ATP, 10-12 h are necessary for measurable amount of Ca2+ to penetrate into the vesicular space, as determined by the fact that X-537A releases Ca2+ from 'loaded' vesicles only after this period of incubation. A fraction of Ca2+ of 50-60 nmol/mg protein, rapidly taken up by sarcoplasmic reticulum, exchanges with Mg2+ and K+ in the medium and is readily released by ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid, but it is not released by X-537A. The slow-penetrating fraction of Ca2+ (30-40 nmol/mg protein) is rapidly released X-537A. The results indicate that most of the Ca2+ retained by sarcoplasmic reticulum under conditions of passive uptake is bound to the external side of the membrane. The fraction of Ca2+ that slowly penetrates the vesicles remains essentially free inside the vesicles and only a small part is bound to the internal side of the membrane.  相似文献   

11.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV).  相似文献   

12.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

13.
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein.  相似文献   

14.
Studies on the vesicular fraction of myometrium sarcolemma showed that in the absence of initial Ca2+ gradient the vesicles activity accumulate Ca2+ by utilizing the energy of the antiport-directed Na+ gradient. Monensin (50 microM) suppresses practically completely the Ca2+ transport. The amount of Ca2+ entering the vesicles against the concentration gradient diminishes with a decrease in the oppositely directed Na+ gradient. Cd2+ (5 mM) causes a complete inhibition of active Ca2+ transport, whereas Mn2+ and Mg2+ inhibit this process by 85% and 35%, respectively; amiloride (500 microM) is fairly ineffective. In the absence of initial Ca2+ and Na+ gradients valinomycin (0.05-1 microM) does not affect the changes in Ca2+ concentration in the intravesicular volume both with and without K+ gradient. Under conditions of initial equilibrium for Ca2+ and Na+ the magnitude and sign of the membrane potential for the K(+)-valinomycin system have no effect on Ca2+ transport regardless of value of absolute Na+ concentration inside and outside the vesicles. Depolarization of membrane vesicles does not interfere with the Na(+)-driven active Ca2+ transport into the sarcolemma which is dependent on the energy of the Na+ gradient. Using calibration curves, it was shown that the physiologically significant (6-fold) Na+ gradient increases Ca2+ concentration in the intravesicular volume from 100 to 160-170 microM. Ac active potential-independent Ca2+ transport through the smooth muscle sarcolemma requires about one third (0.3 kcal/mol) of the Na+ gradient; energy the remainder is dissipated. It is concluded that in smooth muscles the Na+ gradient can provide the active transsarcolemmal transport of Ca2+.  相似文献   

15.
Inside-out plasma-membrane vesicles isolated from rat liver [Prpic, Green, Blackmore & Exton (1984) J. Biol. Chem. 259, 1382-1385] accumulated a substantial amount of 45Ca2+ when they were incubated in a medium whose ionic composition and pH mimicked those of cytosol and which contained MgATP. The Vmax of the initial 45Ca2+ uptake rate was 2.9 +/- 0.6 nmol/min per mg and the Km for Ca2+ was 0.50 +/- 0.08 microM. The ATP-dependent 45Ca2+ uptake by inside-out plasma-membrane vesicles was about 20 times more sensitive to saponin than was the ATP-dependent uptake by a microsomal preparation. The 45Ca2+ efflux from the inside-out vesicles, which is equivalent to the Ca2+ influx in intact cells, was increased when the free Ca2+ concentration in the medium was decreased. The Ca2+ antagonists La3+ and Co2+ inhibited the 45Ca2+ efflux from the vesicles. Neomycin stimulated the Ca2+ efflux in the presence of either a high or a low free Ca2+ concentration. These results confirm that polyvalent cations regulate Ca2+ fluxes through the plasma membrane.  相似文献   

16.
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase.  相似文献   

17.
Transverse tubule vesicles isolated from frog skeletal muscle display sodium-calcium exchange activity, which was characterized measuring 45Ca influx in vesicles incubated with sodium. The initial rates of exchange varied as a function of the membrane diffusion potentials imposed across the membrane vesicles, increasing with positive intravesicular potentials according to an electrogenic exchange with a stoichiometry greater than 2 sodium ions per calcium ion transported. The exchange activity was a saturable function of extravesicular free calcium, with an apparent K0.5 value of 3 microM and maximal rates of exchange ranging from 3 to 5 nmol/mg protein per 5 s. The exchange rate increased when intravesicular sodium concentration was increased; saturation was approached when vesicles were incubated with concentrations of 160 mM sodium. The isolated transverse tubule vesicles, which are sealed with the cytoplasmic side out, had a luminal content of 112 +/- 39 nmol calcium per mg protein. In the absence of sodium, the exchanger carried out electroneutral calcium-calcium exchange, which was stimulated by increasing potassium concentrations in the intravesicular side. Calcium-calcium exchange showed an extravesicular calcium dependence similar to the calcium dependence of the sodium-calcium exchange, with an apparent K0.5 of 6 microM. Sodium-calcium and calcium-calcium exchange were both inhibited by amiloride. The sodium-calcium exchange system operated both in the forward and in the reverse mode; sodium, as well as calcium, induced calcium efflux from 45Ca-loaded vesicles. This system may play an important role in decreasing the intracellular calcium concentration in skeletal muscle following electrical stimulation.  相似文献   

18.
The release of Ca2+ induced by inositol 1,4,5-trisphosphate (InsP3) in the presence of GTP was examined by using saponin-permeabilized macrophages. The origin and the amount of mobilized Ca2+ in intact macrophages stimulated with chemotactic peptide were also examined to assess the physiological significance of GTP and InsP3 on Ca2+-releasing activities. The total amount of Ca2+ released by 20 microM-A23187 from the unstimulated intact macrophages was 1.4 nmol/4 x 10(6) cells, and the mitochondrial uncoupler did not cause an efflux of Ca2+ from the cells. The Ca2+ accumulation by the non-mitochondrial pool(s) was inhibited by the presence of GTP, and the total amount of releasable Ca2+ (1.4 nmol/4 x 10(6) cells) was comparable with that accumulated by the non-mitochondrial pool(s) in the presence of GTP at a free Ca2+ concentration of 0.14 microM. The mobilized and subsequently effluxed Ca2+ in cells stimulated with chemotactic peptide was estimated to be 0.3 nmol/4 x 10(6) cells. Much the same amounts were released by about the half-maximal dose of InsP3 from the non-mitochondrial pool(s) of saponin-treated macrophages that had accumulated Ca2+ at a free concentration of 0.14 microM in the presence of GTP. These results suggest that the Ca2+-releasing activity induced by GTP may play a role in the long-term regulation of Ca2+ content in the non-mitochondrial pool(s) of macrophages, and that released by InsP3 can explain, quantitatively, the chemotactic-peptide-induced mobilization of Ca2+.  相似文献   

19.
The origin and amount of mobilized Ca2+ in chemotactic peptide-stimulated guinea pig neutrophils were examined using biochemical techniques. The total amount of releasable Ca2+ by 20 microM A23187 from the unstimulated intact cells was 0.91 nmol/4 X 10(6) cells, as assessed by change in absorbance of the antipyrylazo III-Ca2+ complex. Two types of internal vesicular Ca2+ pool, mitochondrial and non-mitochondrial pool were identified in the saponin-permeabilized cells. The total amount of releasable Ca2+ was comparable to that accumulated by the non-mitochondrial pool at (1-2) X 10(-7) M of a free Ca2+ concentration. The mitochondrial uncoupler, capable of releasing Ca2+ from the mitochondrial pool, neither modified the basal cytosolic free Ca2+ in quin 2-loaded cells nor caused a Ca2+ efflux from the intact cells. These results suggest that the releasable Ca2+ may be located in the non-mitochondrial pool of unstimulated intact cells, and the mitochondrial pool contains little releasable Ca2+. The addition of fMet-Leu-Phe increased the cytosolic free Ca2+ by two processes: Ca2+ mobilization from internal stores and Ca2+ influx through the surface membrane. The Ca2+ mobilized and effluxed from the intact cells by stimulation with the maximal doses of fMet-Leu-Phe was estimated to be 0.27 nmol/4 X 10(6) cells. Almost equal amounts were released by the maximal doses of inositol 1,4,5-trisphosphate from the non-mitochondrial pool of saponin-treated cells that had accumulated Ca2+ at a free Ca2+ concentration of 1.4 X 10(-7) M. The mechanism related to the Ca2+ influx by fMet-Leu-Phe stimulation was also examined. The addition of nifedipine or phosphatidic acid did not affect the change in the cytosolic free Ca2+ induced by fMet-Leu-Phe, thereby suggesting that the receptor-mediated Ca2+ channel may be involved in the Ca2+ influx.  相似文献   

20.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号