首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on codon usage in Entamoeba histolytica   总被引:13,自引:0,他引:13  
Codon usage bias of Entamoeba histolytica, a protozoan parasite, was investigated using the available DNA sequence data. Entamoeba histolytica having AT rich genome, is expected to have A and/or T at the third position of codons. Overall codon usage data analysis indicates that A and/or T ending codons are strongly biased in the coding region of this organism. However, multivariate statistical analysis suggests that there is a single major trend in codon usage variation among the genes. The genes which are supposed to be highly expressed are clustered at one end, while the majority of the putatively lowly expressed genes are clustered at the other end. The codon usage pattern is distinctly different in these two sets of genes. C ending codons are significantly higher in the putatively highly expressed genes suggesting that C ending codons are translationally optimal in this organism. In the putatively lowly expressed genes A and/or T ending codons are predominant, which suggests that compositional constraints are playing the major role in shaping codon usage variation among the lowly expressed genes. These results suggest that both mutational bias and translational selection are operational in the codon usage variation in this organism.  相似文献   

2.
Positive correlation between gene expression and synonymous codon usage bias is well documented in the literature. However, in the present study of Vibrio cholerae genome, we have identified a group of genes having unusually high codon usage bias despite being low potential expressivity. Our results suggest that codon usage in lowly expressed genes might also be selected on to preferably use non-optimal codons to maintain a low cellular concentration of the proteins that they encode. This would predict that lowly expressed genes are also biased in codon usage, but in a way that is opposite to the bias of highly expressed genes.  相似文献   

3.
Lavner Y  Kotlar D 《Gene》2005,345(1):127-138
We study the interrelations between tRNA gene copy numbers, gene expression levels and measures of codon bias in the human genome. First, we show that isoaccepting tRNA gene copy numbers correlate positively with expression-weighted frequencies of amino acids and codons. Using expression data of more than 14,000 human genes, we show a weak positive correlation between gene expression level and frequency of optimal codons (codons with highest tRNA gene copy number). Interestingly, contrary to non-mammalian eukaryotes, codon bias tends to be high in both highly expressed genes and lowly expressed genes. We suggest that selection may act on codon bias, not only to increase elongation rate by favoring optimal codons in highly expressed genes, but also to reduce elongation rate by favoring non-optimal codons in lowly expressed genes. We also show that the frequency of optimal codons is in positive correlation with estimates of protein biosynthetic cost, and suggest another possible action of selection on codon bias: preference of optimal codons as production cost rises, to reduce the rate of amino acid misincorporation. In the analyses of this work, we introduce a new measure of frequency of optimal codons (FOP'), which is unaffected by amino acid composition and is corrected for background nucleotide content; we also introduce a new method for computing expected codon frequencies, based on the dinucleotide composition of the introns and the non-coding regions surrounding a gene.  相似文献   

4.
In this study codon usage bias of all experimentally known genes of Lactococcus lactis has been analyzed. Since Lactococcus lactis is an AT rich organism, it is expected to occur A and/or T at the third position of codons and detailed analysis of overall codon usage data indicates that A and/or T ending codons are predominant in this organism. However, multivariate statistical analyses based both on codon count and on relative synonymous codon usage (RSCU) detect a large number of genes, which are supposed to be highly expressed are clustered at one end of the first major axis, while majority of the putatively lowly expressed genes are clustered at the other end of the first major axis. It was observed that in the highly expressed genes C and T ending codons are significantly higher than the lowly expressed genes and also it was observed that C ending codons are predominant in the duets of highly expressed genes, whereas the T endings codons are abundant in the quartets. Abundance of C and T ending codons in the highly expressed genes suggest that, besides, compositional biases, translational selection are also operating in shaping the codon usage variation among the genes in this organism as observed in other compositionally skewed organisms. The second major axis generated by correspondence analysis on simple codon counts differentiates the genes into two distinct groups according to their hydrophobicity values, but the same analysis computed with relative synonymous codon usage values could not discriminate the genes according to the hydropathy values. This suggests that amino acid composition exerts constraints on codon usage in this organism. On the other hand the second major axis produced by correspondence analysis on RSCU values differentiates the genes into two groups according to the synonymous codon usage for cysteine residues (rarest amino acids in this organism), which is nothing but a artifactual effect induced by the RSCU values. Other factors such as length of the genes and the positions of the genes in the leading and lagging strand of replication have practically no influence in the codon usage variation among the genes in this organism.  相似文献   

5.
Codon usage in Aspergillus nidulans.   总被引:17,自引:0,他引:17  
Summary Synonymous codon usage in genes from the ascomycete (filamentous) fungus Aspergillus nidulans has been investigated. A total of 45 gene sequences has been analysed. Multivariate statistical analysis has been used to identify a single major trend among genes. At one end of this trend are lowly expressed genes, whereas at the other extreme lie genes known or expected to be highly expressed. The major trend is from nearly random codon usage (in the lowly expressed genes) to codon usage that is highly biased towards a set of 19–20 optimal codons. The G+C content of the A. nidulans genome is close to 50%, indicating little overall mutational bias, and so the codon usage of lowly expressed genes is as expected in the absence of selection pressure at silent sites. Most of the optimal codons are C- or G-ending, making highly expressed genes more G+C-rich at silent sites.  相似文献   

6.
Synonymous codon usage varies considerably among Caenorhabditis elegans genes. Multivariate statistical analyses reveal a single major trend among genes. At one end of the trend lie genes with relatively unbiased codon usage. These genes appear to be lowly expressed, and their patterns of codon usage are consistent with mutational biases influenced by the neighbouring nucleotide. At the other extreme lie genes with extremely biased codon usage. These genes appear to be highly expressed, and their codon usage seems to have been shaped by selection favouring a limited number of translationally optimal codons. Thus, the frequency of these optimal codons in a gene appears to be correlated with the level of gene expression, and may be a useful indicator in the case of genes (or open reading frames) whose expression levels (or even function) are unknown. A second, relatively minor trend among genes is correlated with the frequency of G at synonymously variable sites. It is not yet clear whether this trend reflects variation in base composition (or mutational biases) among regions of the C.elegans genome, or some other factor. Sequence divergence between C.elegans and C.briggsae has also been studied.  相似文献   

7.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

8.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

9.
According to population genetics models, genomic regions with lower crossing-over rates are expected to experience less effective selection because of Hill-Robertson interference (HRi). The effect of genetic linkage is thought to be particularly important for a selection of weak intensity such as selection affecting codon usage. Consistent with this model, codon bias correlates positively with recombination rate in Drosophila melanogaster and Caenorhabditis elegans. However, in these species, the G+C content of both noncoding DNA and synonymous sites correlates positively with recombination, which suggests that mutation patterns and recombination are associated. To remove this effect of mutation patterns on codon bias, we used the synonymous sites of lowly expressed genes that are expected to be effectively neutral sites. We measured the differences between codon biases of highly expressed genes and their lowly expressed neighbors. In D. melanogaster we find that HRi weakly reduces selection on codon usage of genes located in regions of very low recombination; but these genes only comprise 4% of the total. In C. elegans we do not find any evidence for the effect of recombination on selection for codon bias. Computer simulations indicate that HRi poorly enhances codon bias if the local recombination rate is greater than the mutation rate. This prediction of the model is consistent with our data and with the current estimate of the mutation rate in D. melanogaster. The case of C. elegans, which is highly self-fertilizing, is discussed. Our results suggest that HRi is a minor determinant of variations in codon bias across the genome.  相似文献   

10.
11.
12.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

13.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

14.
Codon usage data for 56 Bacillus subtilis genes show that synonymous codon usage in B. subtilis is less biased than in Escherichia coli, or in Saccharomyces cerevisiae. Nevertheless, certain genes with a high codon bias can be identified by correspondence analysis, and also by various indices of codon bias. These genes are very highly expressed, and a general trend (a decrease) in codon bias across genes seems to correspond to decreasing expression level. This, then, may be a general phenomenon in unicellular organisms. The unusually small effect of translational selection on the pattern of codon usage in lowly expressed genes in B. subtilis yields similar dinucleotide frequencies among different codon positions, and on complementary strands. These patterns could arise through selection on DNA structure, but more probably are largely determined by mutation. This prevalence of mutational bias could lead to difficulties in assessing whether open reading frames encode proteins.  相似文献   

15.
Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice–Arabidopsis homologous gene pairs to study evolutionary forces responsible for codon usage divergence between housekeeping and tissue-specific genes. In both rice and Arabidopsis, it is mutational bias that regulates error minimization in highly expressed genes of both housekeeping and tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes are under strong selective constraint in plants. However, in tissue-specific genes, lowly expressed genes are under stronger selective constraint compared with highly expressed genes. We demonstrated that constraint acting on mRNA secondary structure is responsible for modulating codon usage variations in rice tissue-specific genes. Thus, different evolutionary forces must underline the evolution of synonymous codon usage of highly expressed genes of housekeeping and tissue-specific genes in rice and Arabidopsis.Key words: error minimization, housekeeping, mRNA folding energy, synonymous rates, tissue specific, tRNA copy number  相似文献   

16.
A O Urrutia  L D Hurst 《Genetics》2001,159(3):1191-1199
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.  相似文献   

17.
18.
翻译起始调控是基因表达调控的一个关键步骤之一。本文以鸡为研究材料,比较研究了鸡基因组高表达基因和低表达基因翻译起始密码子上下游的碱基序列差异,旨在寻找影响鸡基因表达水平的特异性调控位点。全部3 020个单剪接基因完整的mRNA序列及有详细注释的5'UTRs序列从Ensembl下载。编写计算机程序,读取每个基因mRNA起始密码子上下游各位点的碱基。研究发现,起始密码子上游-3、-2位点可能是鸡基因组基因表达起始密码子正确识别的关键位点。起始密码子上下游的碱基组成分析发现,高表达基因和低表达基因起始密码子的上游均倾向使用(G+C),高表达基因的使用偏倚尤为强烈。序列差异比较发现,高表达基因在-9、-6、-3、+4位点显著偏向G,在-1、-2、-4、-5位点显著偏向C。低表达基因起始密码子上游使用A、U的频率显著高于低表达基因。在-19位点强烈偏向A,在+1、+11、+14位点强烈偏向U。  相似文献   

19.
Adaptive codon usage provides evidence of natural selection in one of its most subtle forms: a fitness benefit of one synonymous codon relative to another. Codon usage bias is evident in the coding sequences of a broad array of taxa, reflecting selection for translational efficiency and/or accuracy as well as mutational biases. Here, we quantify the magnitude of selection acting on alternative codons in genes of the nematode Caenorhabditis remanei, an outcrossing relative of the model organism C. elegans, by fitting the expected mutation-selection-drift equilibrium frequency distribution of preferred and unpreferred codon variants to the empirical distribution. This method estimates the intensity of selection on synonymous codons in genes with high codon bias as N(e)s = 0.17, a value significantly greater than zero. In addition, we demonstrate for the first time that estimates of ongoing selection on codon usage among genes, inferred from nucleotide polymorphism data, correlate strongly with long-term patterns of codon usage bias, as measured by the frequency of optimal codons in a gene. From the pattern of polymorphisms in introns, we also infer that these findings do not result from the operation of biased gene conversion toward G or C nucleotides. We therefore conclude that coincident patterns of current and ancient selection are responsible for shaping biased codon usage in the C. remanei genome.  相似文献   

20.
Salim HM  Ring KL  Cavalcanti AR 《Protist》2008,159(2):283-298
We used the recently sequenced genomes of the ciliates Tetrahymena thermophila and Paramecium tetraurelia to analyze the codon usage patterns in both organisms; we have analyzed codon usage bias, Gln codon usage, GC content and the nucleotide contexts of initiation and termination codons in Tetrahymena and Paramecium. We also studied how these trends change along the length of the genes and in a subset of highly expressed genes. Our results corroborate some of the trends previously described in Tetrahymena, but also negate some specific observations. In both genomes we found a strong bias toward codons with low GC content; however, in highly expressed genes this bias is smaller and codons ending in GC tend to be more frequent. We also found that codon bias increases along gene segments and in highly expressed genes and that the context surrounding initiation and termination codons are always AT rich. Our results also suggest differences in the efficiency of translation of the reassigned stop codons between the two species and between the reassigned codons. Finally, we discuss some of the possible causes for such translational efficiency differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号