首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM.  相似文献   

2.
Phosphoribosylaminoimidazole-succinocarboxamide synthetase (SAICAR synthetase) converts 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) to 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide (SAICAR). The enzyme is a target of natural products that impair cell growth. Reported here are the crystal structures of the ADP and the ADP.CAIR complexes of SAICAR synthetase from Escherichia coli, the latter being the first instance of a CAIR-ligated SAICAR synthetase. ADP and CAIR bind to the active site in association with three Mg(2+), two of which coordinate the same oxygen atom of the 4-carboxyl group of CAIR; whereas, the third coordinates the alpha- and beta-phosphoryl groups of ADP. The ADP.CAIR complex is the basis for a transition state model of a phosphoryl transfer reaction involving CAIR and ATP, but also supports an alternative chemical pathway in which the nucleophilic attack of l-aspartate precedes the phosphoryl transfer reaction. The polypeptide fold for residues 204-221 of the E. coli structure differs significantly from those of the ligand-free SAICAR synthetase from Thermatoga maritima and the adenine nucleotide complexes of the synthetase from Saccharomyces cerevisiae. Conformational differences between the E. coli, T. maritima, and yeast synthetases suggest the possibility of selective inhibition of de novo purine nucleotide biosynthesis in microbial organisms.  相似文献   

3.
Meyer E  Kappock TJ  Osuji C  Stubbe J 《Biochemistry》1999,38(10):3012-3018
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-13C]-N5-CAIR and [7-14C]-N5-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.  相似文献   

4.
E Meyer  N J Leonard  B Bhat  J Stubbe  J M Smith 《Biochemistry》1992,31(21):5022-5032
Aminoimidazole riobnucleotide carboxylase, the sixth step in the purine biosynthetic pathway, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to carboxyaminoimidazole ribonucleotide (CAIR). The gene products of the purE and purK genes (PurE and PurK, respectively) thought to be responsible for this activity have been overexpressed and the proteins purified to homogeneity. PurE separates from PurK in the first ammonium sulfate fractionation during the purification. No evidence for association of the two gene products under a variety of conditions using a variety of methods could be obtained. To facilitate the assay for CAIR production, the purC gene product, 5-aminoimidazole-4-N-succinylcarboxamide ribonucleotide (SAICAR) synthetase has also been overexpressed and purified to homogeneity. The activities of PurE, PurK, and PurE.PurK have been investigated. PurE alone is capable of catalyzing the conversion of AIR to CAIR 1 million times faster than the nonenzymatic rate. The Km for HCO3- in the PurE-dependent reaction is 110 mM! PurK possesses an ATPase activity that is dependent on the presence of AIR. No bicarbonate dependence on this reaction could be demonstrated (less than 100 microM), and AIR is not carboxylated during the hydrolysis of ATP. Incubation of a 1:1 mixture of PurE and PurK at low concentrations of bicarbonate (less than 100 microM) revealed that CAIR is produced but requires the stoichiometric conversion of ATP to ADP and Pi. No dependence on the concentration of HCO3- could be demonstrated. A new energy requirement in the purine biosynthetic pathway has been established.  相似文献   

5.
The ADE1 gene of the yeast Saccharomyces cerevisiae has been cloned by complementation of the ade1 mutation. The nucleotide sequence has been determined for the 918-bp coding region, 240-bp 5'-noncoding region and 292-bp 3'-noncoding region. The sequenced region includes a single large open reading frame coding for a protein of 306 amino acid (aa) residues. The promoter of the ADE1 gene contains a copy of the 5'-TGACTC hexanucleotide, a feature characteristic of promoters under general aa control. Subsequent search of other published purine biosynthesis gene sequences revealed that all of them also contain general aa control signals in their promoter regions. An expression plasmid containing the ADE1 coding region under control of the PHO5 promoter produced N-succinyl-5-aminoimidazole-4-carboxamide ribotide (SAICAR) synthetase in yeast cells at a level of 40% of total cellular protein. One-step purification resulted in an almost homogeneous preparation of SAICAR synthetase.  相似文献   

6.
Iancu CV  Zhou Y  Borza T  Fromm HJ  Honzatko RB 《Biochemistry》2006,45(38):11703-11711
Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket.  相似文献   

7.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

8.
9.
The synthesis of analogues of 4-carboxy-5-amino-1-beta-D-ribofuranosylimidazole-5'-phosphate (CAIR) in which the carbonyl group is replaced by a grouping of tetrahedral geometry is described. These are planned as transition state inhibitors of SAICAR synthetase, the enzyme which converts CAIR into its amide with L-aspartic acid.  相似文献   

10.
The mechanism of ppGpp inhibition of adenylosuccinate synthetase (EC 6.3.4.4) was examined. Initial rate kinetic studies demonstrate the ppGpp inhibition is competitive with respect to GTP and noncompetitive with respect to L-aspartate and IMP. This is in contrast to an earlier report (Gallant, J., Irr, J., and Cashel, M. (1971) J. Biol. Chem. 246, 5812-5816), which suggested that ppGpp did not bind at the GTP site. Possible reasons for the discrepancy are discussed. The potency of the ppGpp inhibition is confirmed.  相似文献   

11.
DL-threo-beta-Fluoroaspartate is a substrate for the two enzymes in de novo purine biosynthesis that use aspartate, namely 4-(N-succino)-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) synthetase and adenylosuccinate synthetase. With both enzymes, Vmax with threo-beta-fluoroaspartate is about 50% of that observed with aspartate. The products of the two enzyme reactions, threo-beta-fluoro-SAICAR and threo-beta-fluoroadenylosuccinate, are inhibitors of adenylosuccinate lyase purified from rat skeletal muscle. In 20 mM phosphate buffer, pH 7.4, the KI values for threo-beta-fluoro-SAICAR are 5 and 3 microM and for threo-beta-fluoroadenylosuccinate are 3 and 1 microM, in the SAICAR and adenylosuccinate cleavage reactions, respectively. In 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, the KI values for threo-beta-fluoro-SAICAR are approximately 0.14 and 0.03 microM and for threo-beta-fluoroadenylosuccinate are approximately 0.05 and 0.015 microM, in the same two reactions, respectively. These KI values are one-half to one-hundredth of the Km values for SAICAR and adenylosuccinate, the two substrates of adenylosuccinate lyase. After an 8-h incubation with 45 microM threo-beta-fluoroaspartate, H4 cells contain 200-300 microM threo-beta-fluoro-SAICAR and 60-90 microM threo-beta-fluoroadenylosuccinate. These concentrations of fluoro analogs are sufficient to substantially inhibit adenylosuccinate lyase and hence the de novo synthesis of purines in H4 cells.  相似文献   

12.
Vertebrates have acidic and basic isozymes of adenylosuccinate synthetase, which participate in the first committed step of de novo AMP biosynthesis and/or the purine nucleotide cycle. These isozymes differ in their kinetic properties and N-leader sequences, and their regulation may vary with tissue type. Recombinant acidic and basic synthetases from mouse, in the presence of active site ligands, behave in analytical ultracentrifugation as dimers. Active site ligands enhance thermal stability of both isozymes. Truncated forms of both isozymes retain the kinetic parameters and the oligomerization status of the full-length proteins. AMP potently inhibits the acidic isozyme competitively with respect to IMP. In contrast, AMP weakly inhibits the basic isozyme noncompetitively with respect to all substrates. IMP inhibition of the acidic isozyme is competitive, and that of the basic isozyme noncompetitive, with respect to GTP. Fructose 1,6-bisphosphate potently inhibits both isozymes competitively with respect to IMP but becomes noncompetitive at saturating substrate concentrations. The above, coupled with structural information, suggests antagonistic interactions between the active sites of the basic isozyme, whereas active sites of the acidic isozyme seem functionally independent. Fructose 1,6-bisphosphate and IMP together may be dynamic regulators of the basic isozyme in muscle, causing potent inhibition of the synthetase under conditions of high AMP deaminase activity.  相似文献   

13.
The established pathway for the last two steps in purine biosynthesis, the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP) to IMP, is known to utilize 10-formyl-tetrahydrofolate as the required C1 donor cofactor. The biosynthetic conversion of ZMP to IMP in three members of the domain Archaea, Methanobacterium thermoautotrophicum deltaH, M. thermoautotrophicum Marburg, and Sulfolobus solfataricus, however, has been demonstrated to occur with only formate and ATP serving as cofactors. Thus, in these archaea, which use methanopterin (MPT) or another modified folate in place of folate as the C1 carrier coenzyme, neither folate nor a modified folate serves as a cofactor for this biosynthetic transformation. It is concluded that archaea, which function with modified folates such as MPT, are able to carry out purine biosynthesis without the involvement of folates or modified folates.  相似文献   

14.
A systematic investigation into the interaction of several triazinyl dyes with two enzymes from purine metabolism, IMP dehydrogenase (IMP: NAD+ oxidoreductase, EC 1.2.1.14( and adenylosuccinate synthetase (IMP: L-aspartate ligase (GDP-forming), EC 6.3.4.4) has been conducted. Evidence from kinetic inhibition studies, enzyme inactivation with specific affinity labels and specific elution techniques from agarose-immobilised dyes indicate that triazine dyes such as Procion Blue H-B (Cibacron Blue F3G-A), Red HE-3B and Red H-3B are able to differentiate between the nucleotide-binding sites of these enzymes. This information has been exploited to design specific elution techniques for the purification of these enzymes by affinity chromatography.  相似文献   

15.
Wall M  Shim JH  Benkovic SJ 《Biochemistry》2000,39(37):11303-11311
We have prepared 4-substituted analogues of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to investigate the specificity and mechanism of AICAR transformylase (AICAR Tfase). Of the nine analogues of AICAR studied, only one analogue, 5-aminoimidazole-4-thiocarboxamide ribonucleotide, was a substrate, and it was converted to 6-mercaptopurine ribonucleotide. The other analogues either did not bind or were competitive inhibitors, the most potent being 5-amino-4-nitroimidazole ribonucleotide with a K(i) of 0.7 +/- 0.5 microM. The results show that the 4-carboxamide of AICAR is essential for catalysis, and it is proposed to assist in mediating proton transfer, catalyzing the reaction by trapping of the addition compound. AICAR analogues where the nitrogen of the 4-carboxamide was derivatized with a methyl or an allylic group did not bind AICAR Tfase, as determined by pre-steady-state burst kinetics; however, these compounds were potent inhibitors of IMP cyclohydrolase (IMP CHase), a second activity of the bifunctional mammalian enzyme (K(i) = 0.05 +/- 0.02 microM for 4-N-allyl-AlCAR). It is proposed that the conformation of the carboxamide moiety required for binding to AICAR Tfase is different than the conformation required for binding to IMP CHase, which is supported by inhibition studies of purine ribonucleotides. It is shown that 5-formyl-AICAR (FAICAR) is a product inhibitor of AICAR Tfase with K(i) of 0.4 +/- 0.1 microM. We have determined the equilibrium constant of the transformylase reaction to be 0.024 +/- 0.001, showing that the reaction strongly favors AICAR and the 10-formyl-folate cofactor. The coupling of the AICAR Tfase and IMP CHase activities on a single polypeptide allows the overall conversion of AICAR to IMP to be favorable by coupling the unfavorable formation of FAICAR with the highly favorable cyclization reaction. The current kinetic studies have also indicated that the release of FAICAR is the rate-limiting step, under steady-state conditions, in the bifunctional enzyme and channeling is not observed between AICAR Tfase and IMP CHase.  相似文献   

16.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

17.
Two complementary methods have been devised for measuring the activity of 5-amino-4-imidazole-N-succinocarboxamide ribonucleotide synthetase (SAICAR synthetase, EC 6.3.2.6), a critical enzyme in the pathway of purine biosynthesis. In the first method, l-[4.14C]aspartic acid is condensed with 5-amino-4-imidazolecarboxylic acid ribonucleotide (AICOR) via the action of SAICAR synthetase. Unreacted l-[4-14C]aspartic acid is measured by scintillation spectrometry. In the second method, the reverse reaction of SAICAR synthetase is measured; radiactive 5-amino-4-imidazole-N-succinocarboxamide ribonucleotide (SAICAR) is synthetized enzymatically, using a partial purified preparation of SAICAR synthetase from chicken liver. To the purified [14C]SAICAR is added: sodium arsenate, Tris-HCl buffer containing ADPMgCl2 or buffer alone, and to initiate the reaction, a 12 000 × g supernatant or other suitable source of enzyme. As a consequence of the arsenolytic cleavage of [14C]SAICAR, l-[4-14C]aspartic acid is generated in stoichiometric amounts. The fourth carbon of this amino acid is then detached by selective enzymatic decarboxylation, trapped in 40% KOH and quantitated by scintillation spectrometry. The assays, performed as prescribed, are facile and notably sensitive; using them, the specific activity of SAICAR synthetase has been measured in acetone powders of the livers of representative members of the Vertebrata, and also in the principal viscera of the mouse. Of the livers examined, pigeon liver was the richest source of the investigated enzyme.  相似文献   

18.
The site of action of hydantocidin was probed using Arabidopsis thaliana plants growing on agar plates. Herbicidal effects were reversed when the agar medium was supplemented with AMP, but not IMP or GMP, suggesting that hydantocidin blocked the two-step conversion of IMP to AMP in the de novo purine biosynthesis pathway. Hydantocidin itself did not inhibit adenylosuccinate synthetase or adenylosuccinate lyase isolated from Zea mays. However, a phosphorylated derivative of hydantocidin, N-acetyl-5'-phosphohydantocidin, was a potent inhibitor of the synthetase but not of the lyase. These results identify the site of action of hydantocidin and establish adenylosuccinate synthetase as an herbicide target of commercial potential.  相似文献   

19.
Summary The auxanographic analysis of 67 purine-dependent mutants and chromatographic analysis of their culture fluids were used to study purine biosynthesis in Staphylococcus aureus. The de novo biosynthesis of IMP from SAICAR, and the conversion of IMP to AMP and GMP were shown to occur via the conventional pathways reported for other organisms. Mutants blocked prior to the formation of SAICAR could not be differentiated by the tests used, and no substantial information on this portion of the pathway was obtained. The auxanographic characteristics of double mutants requiring both histidine and purines provided evidence that the sole route whereby S. aureus can convert AMP to IMP (and hence to GMP) is via those reactions of the histidine biosynthetic pathway leading to the formation of IGP and AICAR. In addition, we were able to mutationally separate AICAR transformylase and inosinocase; this separation has not been accomplished in other microorganisms.  相似文献   

20.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号