共查询到20条相似文献,搜索用时 15 毫秒
1.
Gigant B Curmi PA Martin-Barbey C Charbaut E Lachkar S Lebeau L Siavoshian S Sobel A Knossow M 《Cell》2000,102(6):809-816
Phosphoproteins of the stathmin family interact with the alphabeta tubulin heterodimer (tubulin) and hence interfere with microtubule dynamics. The structure of the complex of GDP-tubulin with the stathmin-like domain of the neural protein RB3 reveals a head-to-tail assembly of two tubulins with a 91-residue RB3 alpha helix in which each copy of an internal duplicated sequence interacts with a different tubulin. As a result of the relative orientations adopted by tubulins and by their alpha and beta subunits, the tubulin:RB3 complex forms a curved structure. The RB3 helix thus most likely prevents incorporation of tubulin into microtubules by holding it in an assembly with a curvature very similar to that of the depolymerization products of microtubules. 相似文献
2.
Microtubule inhibitors can be classified into two categories: 1) those which inhibit the polymerization-dependent GTPase activity of phosphocellulose-purified tubulin, but induce a significant polymerization-independent GTPase activity (e.g. colchicine, griseofulvine, daunorubicine); 2) those which inhibit the GTPase activity associated with tubulin polymerization and that induced by inhibitors of the first class (e.g. the vincaalkaloids and podophyllotoxin). The colchicine-stimulated GTPase activity of tubulin appears to be due to the tubulin.colchicine complex. This suggests that colchicine inhibits tubulin assembly by binding to a tubulin-tubulin interaction site required for the polymerization-dependent GTPase activity and induces by itself a tubulin conformational change that leads to polymerization-independent GTPase activity. Stoichiometry of inhibition by vinblastine of the colchicine-stimulated GTPase activity is 1:2. On the other hand, the inhibition by vinblastine of the tubulin self-assembly and of the polymerization-dependent GTPase activity is strongly substoichiometric at the beginning of the polymerization reaction, 1 vinblastine molecule inhibiting the ability of 10 tubulin dimers to polymerize and to hydrolyze the GTP. However, at the polymerization plateau, the inhibition effect by vinblastine appears to be lower, suggesting a selective action of vinblastine on the early stages of the polymerization reaction. 相似文献
3.
Despite numerous studies considering DNA as a primary target of cisplatin attack, this work is the first to show the pure effect of cisplatin on the process of tubulin assembly/disassembly in vitro. When platinated, tubulin does not assemble into microtubules (direct electron microscopic studies). In place of them, highly stable and inert circled rings arise. Such tubulin aggregates are unable to participate in the process of chromosome separation during the mitosis, thus blocking cell division in living cells, which is a direct evidence of cisplatin antitumor activity. Cisplatin attack on tubulin causing blockage of tubulin assembly occurs via a two-step binding to GTP in the GTP center of tubulin ((195)Pt, (31)P NMR studies). The calculated binding rates are close to those reported in cisplatin-DNA interactions. The mechanism of cisplatin attack on tubulin is proposed. 相似文献
4.
The ligand- and microtubule assembly-induced GTPase activity of purified calf brain tubulin 总被引:1,自引:0,他引:1
Calf brain tubulin purified by means of ammonium sulfate fractionation, ion-exchange chromatography, and MgCl2 precipitation contains a low level of Mg2+ -dependent GTPase activity, the protein preparation being essentially homogeneous according to conventional procedures. Tubulin was freed from this possibly contaminant enzyme activity by Sephacryl S300 gel chromatography. Soluble tubulin itself showed a ligand-induced Mg2+-dependent GTPase activity in the presence of colchicine, but not of tropolone methyl ether, podophyllotoxin, or vinblastine. Tubulin also hydrolyzed GTP when assembling into microtubules. This reaction proceeded in a nonlinear fashion and was suppressed together with microtubule assembly by lowering the protein concentration under the critical concentration, adequately modifying assembly buffer conditions, or using Ca2+, tropolone methyl ether, podophyllotoxin, or vinblastine. The number of molecules of GTP hydrolyzed per molecule of tubulin polymerized was estimated to vary between 0.9 and 2.1, depending on whether morpholineethanesulfonate or phosphate assembly buffers were employed. 相似文献
5.
Specific protein-protein interactions play crucial roles in the regulation of any biological process. Recently, a new protein-protein interaction domain termed PB1 (Phox and Bem1) was identified, which is conserved throughout evolution and present in diverse proteins functioning in signal transduction, cell polarity and survival. Here, we investigated the structure and molecular interactions of the PB1 heterodimer complex composed of the PB1 domains of the yeast proteins Bem1 and Cdc24. A structural model of the Cdc24 PB1 was built by homology modeling and molecular dynamics simulations, and experimentally validated by 15N nuclear Overhauser effect spectroscopy (NOESY)-heteronuclear single quantum coherence (HSQC) analysis. Residues at the interface of the complex for both proteins were identified by NMR titration experiments. A model of the heterodimer was obtained by docking of the two PB1 domains with HADDOCK, which applies ambiguous interaction restraints on residues at the interface to drive the docking procedure. The refined model was validated by site-directed mutagenesis on both Bem1 and Cdc24. Finally, the docking was repeated from the newly published NMR structure of Cdc24, allowing us to assess the performance of homology-based docking. Our results provide insight into the molecular structure of the Bem1-Cdc24 PB1-mediated heterodimer, which allowed identification of critical residues at the binding interface. 相似文献
6.
Young Chan Chae Sukmook Lee Kyun Heo Sang Hoon Ha Yonwoo Jung Jong Hyun Kim Yasuo Ihara Pann-Ghill Suh Sung Ho Ryu 《Cellular signalling》2009,21(12):1818-1826
Collapsin response mediator protein-2 (CRMP-2) plays a key role in axonal development by regulating microtubule dynamics. However, the molecular mechanisms underlying this function have not been clearly elucidated. In this study, we demonstrated that hCRMP-2, specifically amino acid residues 480–509, is essential for stimulating tubulin GTPase activity. We also found that the GTPase-activating protein (GAP) activity of hCRMP-2 was important for microtubule assembly and neurite formation in differentiated PC12 pheochromocytoma cell lines. Mutant hCRMP-2, lacking arginine residues responsible for GAP activity, inhibited microtubule assembly and neurite formation. Interestingly, we found that the N-terminal region (amino acids150–299) of hCRMP-2 had an inhibitory role on GAP activity via a direct interaction with the C-terminal region (amino acids 480–509). Our results suggest that CRMP-2 as a tubulin direct binder may be a GAP of tubulin in neurite formation and that its GAP activity may be regulated by an intramolecular interaction with an N-terminal inhibitory region. 相似文献
7.
Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. 相似文献
8.
Dong HJ Tao SM Li YQ Chan SH Shen XL Wang CX Guan WJ 《Acta biochimica et biophysica Sinica》2006,38(7):467-476
Fifty-four homolog(Ffh)and FtsY are the central components of the signal recognitionparticle secretory pathway of bacteria.In this study,the core domain and active sites of FtsY and Ffh fromStreptomyces coelicolor,which are responsible for guanosine triphosphate(GTP)hydrolysis,were identi-fied using site-directed mutagenesis.Mutations were introduced to the conserved GXXGXGK loop of theputative GTP binding site.Mutation of the Lys residue to Gly in both FtsY and Ffh NG domains significantlydecreased the GTPase activity and GTP binding affinity.Furthermore,a structural model of the ternarycomplex of FtsY/Ffh NG domains and the non-hydrolyzable GTP analog guanylyl 5′-(β,γ-methylenediphosphonate)also revealed that each Lys residue in GXXGXGK of FtsY and Ffh provides thepredicted hydrogen bond required for GTP binding.However,in Fts Y not in Ffh,mutation of the first Glyresidue in the GXXGXGK loop disrupted the GTPase activity.In addition,protease-digesting test demon-strated that NG protein with the mutation of Lys residue was decomposed more easily.Western blot analysissuggested that in Streptomyces coelicolor,Fts Y is present in the membrane fraction and Ffh in the cytosolfraction during the mid-log phase of growth.These results indicated that Lys residue in the putative GTPbinding loop was the crucial residue for the GTPase activity of NG domain. 相似文献
9.
The inhibitory effects of guanosine 5'-(gamma-fluorotriphosphate) [GTP(gamma F)] on both the polymerization and the colchicine-dependent GTPase activity of calf brain tubulin have been studied. The results demonstrate that this analogue of GTP, with a fluorine atom on the gamma-phosphate, is a reversible competitive dead-end inhibitor of the colchicine-induced GTPase activity with a K1 value of (1.8 +/- 0.6) X 10(-4) M. GTP(gamma F) did not promote assembly of tubulin from which the E-site guanine nucleotide had been removed. It binds to the exchangeable nucleotide site competitively with respect to GTP, diminishing both the rate and extent of tubulin polymerization. Treatment in terms of the Oosawa-Kasai model of the inhibitory effect of GTP(gamma F) on the assembly led to a value of Kdis = 1.1 X 10(-6) M for the complex GTP(gamma F)-tubulin. This analogue does not bind to the postulated third site. The growing of tubulin polymers at 37 degrees C was arrested by GTP(gamma F), and only limited depolymerization was induced by the addition of this analogue after assembly in the presence of GTP. This result confirms that the E-site is blocked in the polymer and that this analogue can bind only to the ends of the polymers. Sedimentation velocity and circular dichroism studies showed that the conformation of the tubulin-GTP(gamma F) complex is not identical with that of tubulin-GTP. This is caused by the replacement of the hydroxyl group in the gamma-phosphate by the fluorine group, which have 2.20- and 1.35-A van der Waals radii, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Ricardo B. Maccioni Luis Serrano Jesus Avila 《BioEssays : news and reviews in molecular, cellular and developmental biology》1985,2(4):165-169
The molecular aspects of the microtubule system is a research area that has developed very rapidly during the past decade. Research on the assembly mechanisms and chemistry of tubulin and the molecular biology of microtubules have advanced our understanding of microtubule formation and its regulation. The emerging view of tubulin is of a macromolecule containing spatially discrete sequences that constitute functionally different domains with respect to self-association, interactions with microtubule associated proteins (MAPs) and specific ligands. Recent studies point to the role of the carboxyl-terminal moiety of tubulin subunits in regulating its assembly into microtubules. These investigations combined with further studies on the spatial relationships between tubulin domains should provide new insights into the detailed structural basis of microtubule assembly. 相似文献
11.
Chakrabarti PP Daumke O Suveyzdis Y Kötting C Gerwert K Wittinghofer A 《Journal of molecular biology》2007,367(4):983-995
Rap1 and Rap2 are the only small guanine nucleotide-binding proteins of the Ras superfamily that do not use glutamine for GTP hydrolysis. Moreover, Rap1GAP, which stimulates the GTPase reaction of Rap1 10(5)-fold, does not have the classical "arginine finger" like RasGAP but presumably, introduces an asparagine residue into the active site. Here, we address the requirements of this unique reaction in detail by combining various biochemical methods, such as fluorescence spectroscopy, stopped-flow and time-resolved Fourier transform infrared spectroscopy (FTIR). The fluorescence spectroscopic assay monitors primarily protein-protein interaction steps, while FTIR resolves simultaneously the elementary steps of functional groups labor-free, but it is less sensitive and needs higher concentrations. Combining both methods allows us to distinguish weather mechanistic defects caused by mutation are due to affinity or due to functionality. We show that several mutations of Asn290 block catalysis. Some of the mutants, however, still form a complex with Rap1*GDP in the presence of BeF(x) but not AlF(x), supporting the notion that fluoride complexes are indicators of the ground versus transition state. Mutational analysis also shows that Thr61 is not required for catalysis. While replacement of Thr61 of Rap1 by Leu eliminates GTPase activation by Rap1GAP, the T61A and T61Q mutants have only a minor effect on catalysis, but change the relative rates of cleavage and (P(i)(-)) release. While Rap1GAP(N290A) is completely inactive on wild-type Rap1, it can act on Rap1(T61Q), arguing that Asn290 in trans has a role in catalysis similar to that of the intrinsic Gln in Ras and Rho. Finally, since FTIR works at high, and thus mostly saturating, concentrations, it can clearly separate effects on affinity from purely catalytic modifications, showing that Arg388, conserved between RapGAPs and mutated in the homologous RheBGAP Tuberin, affects binding affinity severely but has no effect on the cleavage reaction itself. 相似文献
12.
GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin 总被引:1,自引:0,他引:1
The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of tubulin and various other GTPases in eukaryotic cells. We have designed a novel inhibitor of FtsZ polymerization based on the structure of the natural substrate GTP. The inhibitory activity of 8-bromoguanosine 5'-triphosphate (BrGTP) was characterized by a coupled assay, which allows simultaneous detection of the extent of polymerization (via light scattering) and GTPase activity (via release of inorganic phosphate). We found that BrGTP acts as a competitive inhibitor of both FtsZ polymerization and GTPase activity with a Ki for GTPase activity of 31.8 +/- 4.1 microM. The observation that BrGTP seems not to inhibit tubulin assembly suggests a structural difference of the GTP-binding pockets of FtsZ and tubulin. 相似文献
13.
Background
The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized.Methodology/Principal Findings
Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein.Conclusions/Significance
Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport. 相似文献14.
Arndt JW Gong W Zhong X Showalter AK Liu J Dunlap CA Lin Z Paxson C Tsai MD Chan MK 《Biochemistry》2001,40(18):5368-5375
The catalytic reaction mediated by DNA polymerases is known to require two Mg(II) ions, one associated with dNTP binding and the other involved in metal ion catalysis of the chemical step. Here we report a functional intermediate structure of a DNA polymerase with only one metal ion bound, the DNA polymerase beta-DNA template-primer-chromium(III).2'-deoxythymidine 5'-beta,gamma-methylenetriphosphate [Cr(III).dTMPPCP] complex, at 2.6 A resolution. The complex is distinct from the structures of other polymerase-DNA-ddNTP complexes in that the 3'-terminus of the primer has a free hydroxyl group. Hence, this structure represents a fully functional intermediate state. Support for this contention is provided by the observation of turnover in biochemical assays of crystallized protein as well as from the determination that soaking Pol beta crystals with Mn(II) ions leads to formation of the product complex, Pol beta-DNA-Cr(III).PCP, whose structure is also reported. An important feature of both structures is that the fingers subdomain is closed, similar to structures of other ternary complexes in which both metal ion sites are occupied. These results suggest that closing of the fingers subdomain is induced specifically by binding of the metal-dNTP complex prior to binding of the catalytic Mg(2+) ion. This has led us to reevaluate our previous evidence regarding the existence of a rate-limiting conformational change in Pol beta's reaction pathway. The results of stopped-flow studies suggest that there is no detectable rate-limiting conformational change step. 相似文献
15.
Amy?P. Guilfoyle Chandrika?N. Deshpande Josep Font Sadurni Miriam-Rose Ash Samuel Tourle Gerhard Schenk Megan?J. Maher Mika Jormakka 《Biophysical journal》2014,107(12):L45-L48
The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.The hydrolysis of guanosine triphosphate (GTP) by GTPases, such as the oncoprotein p21 Ras and heterotrimeric Gα proteins, is a critical regulatory activity for cell growth and proliferation (1). Aberrant GTPases are consequently often implicated in tumorigenesis, developmental disorders, and metabolic diseases (2). Critical for the initiation of a GTPase cycle is the release of guanosine diphosphate (GDP), which allows GTP to bind and switch the protein from an inactive to an active conformation. The GTP is subsequently hydrolyzed to GDP and inorganic phosphate, returning the GTPase to an inactive conformation (3).Given that the release of GDP is the fundamental step in the initiation of a GTPase cycle, the detailed mechanism by which it is released has been under intense scrutiny. Studies using double electron-electron resonance, deuterium-exchange, Rosetta energy analysis, and electron paramagnetic resonance, have shown that the mechanism involves conformational changes in the nucleotide-coordinating G5 loop, one of five nucleotide recognition motifs (4, 5, 6, 7, 8, 9, 10, 11). Structural studies of eukaryotic Gα proteins and the intracellular TEES-type GTPase domain of the prokaryotic iron transporter FeoB (NFeoB) have also illustrated distinct conformations of the G5 loop, depending on the nucleotide-bound state (9, 12).Recently, we reported mutational studies of the G5 loop of Escherichia coli NFeoB, which illustrated a correlation between the sequence composition of the loop and the intrinsic GDP release rate (13). However, despite these observations, it is unclear whether the observed conformational changes in the G5 loop are a prerequisite for GDP release, or if the movement is a consequence of GDP release. To address this fundamental question, in this study we have used a combination of protein engineering and biophysical methods.Initially, to assess the relevance of conformational flexibility in the G5 loop, we aimed to create a protein chimera combining sequence and structural characteristics of both fast and slow GDP-releasing GTPases. We thus engineered a protein chimera using E. coli NFeoB as the scaffold (a protein with fast intrinsic GDP release) and substituted the G5 loop with that of a slow GDP-releasing protein (the human Giα1 protein; Gene ID 2770; Fig. 1
A (5)). GTP hydrolysis assays comparing wild-type (wt) NFeoB (wtNFeoB) and the protein chimera (ChiNFeoB) validated the integrity of the GTPase activities of both proteins (kcat = 0.46 and 0.36 min−1, respectively). To further assess the ChiNFeoB protein, we determined its crystal structure at 2.2 Å resolution (see Table S1 in the Supporting Material). The ChiNFeoB structure contains two molecules in the asymmetric unit, with molecule A bound to GDP. They are essentially identical to the nucleotide-bound wtNFeoB structure (root-mean-square deviation of 1.2 Å over 226 Cα atoms; Fig. 2).Open in a separate windowFigure 1Chimera model and structural comparison. (A) Illustration highlighting the chimera sequence change. (Orange) Sequence of the extended G5 loop from Giα1, which replaced the NFeoB sequence (gray). (B–F) Structural comparison of the G5 loop between (B) WT apo (PDB:3HYR) and nucleotide-bound (PDB:3HYT) NFeoB structures. (C) NFeoB nucleotide-bound and Giα1 (PDB:2ZJZ). (D) Nucleotide-bound NFeoB and chimera (Chi_GDP). (E) Nucleotide-bound chimera and Giα1. (F) Nucleotide-free (Chi_apo) and bound chimera protein. (G) Overview of the nucleotide binding site and structural overlay of chimera and Giα1 structures. To see this figure in color, go online.Open in a separate windowFigure 2Superimposition of nucleotide-bound NFeoB and chimera protein, with thermodynamic parameters. To see this figure in color, go online.However, the ChiNFeoB structure, when compared to the wtNFeoB structure, revealed an alteration in the conformation of the G5 loop, showing an extra turn on the N-terminal end of the α6 helix. This is structurally distinct from the wtFeoB protein, but with a conformation similar to that of the Giα1 protein (PDB:2ZJZ; Fig. 1, B–F). As in the crystal structures of wtNFeoB and Giα1, ChiNFeoB residues implicated in coordination of the nucleotide base maintain their positions in the G5 loop relative to GDP. In particular, residues Ala∗150 and Thr∗151 (NFeoB numbering, the asterisk indicates Giα1 chimera residue) are involved in electrostatic interactions with the nucleotide base moiety, analogous to the structures of both wtNFeoB and Giα1 (Fig. 1
G). Serendipitously, the second molecule in the asymmetric unit of ChiNFeoB (molecule B) was present in the nucleotide-free state. The two molecules (GDP-bound and nucleotide-free) are nearly identical (the superposition of molecules A and B yields a root-mean-square deviation of 0.36 Å over 229 Cα atoms), with the G5 loop adopting a nearly indistinguishable conformation compared to that of the GDP-bound molecule A (Fig. 1
F).Importantly, this conformation is independent of the crystallographic packing, inasmuch as the loop is not involved in any crystal contacts. In contrast, the structures of nucleotide-bound and nucleotide-free wtNFeoB illustrated a large conformational change in the G5 loop (Fig. 1
B). Hence, the substitution in the chimera extends the secondary structure of the α6 helix, and as hypothesized, the engineered ChiNFeoB protein has a G5 loop structure that is more conformationally stable than that of wtNFeoB.We subsequently measured the affinity of the ChiNFeoB protein for GDP using isothermal titration calorimetry (ITC). Nonlinear regression was used to attain the thermodynamic parameters (including the GDP binding affinity, Ka; the corresponding dissociation constant (Kd) was calculated from the equation Kd = 1/Ka). Interestingly, these measurements revealed the ChiNFeoB protein to have an almost 10-fold reduced affinity for GDP (82 vs. 9 μM measured for the WT protein; Fig. 2). In contrast, in a recent alanine scanning mutagenesis study of the G5 loop we observed a fivefold increase in affinity for GDP in a Ser150Ala mutant (2 μM) (14). This mutant protein has a coordination environment for the GDP base analogous to that of the ChiNFeoB protein (Fig. 1
A), indicating that it is not the presence of an alanine at position 150 that causes the reduced GDP affinity observed for the chimera protein. Instead, the analysis by ITC and comparison with previous mutagenesis studies indicates that the GDP binding site is less accessible in the ChiNFeoB protein, likely due to the introduction of conformational rigidity that accompanies the extension of secondary structural elements within the loop (Fig. 1
D).To further evaluate the functional characteristics of the chimera protein, we used stopped-flow fluorescence assays to determine the rate of nucleotide dissociation (koff) and association (kon) for the ChiNFeoB protein. The association rate for the GTP analog mant-GMPPNP was determined from the slope of a linear plot of protein concentration versus the observed association constant (kobs). The kon for the chimera was determined to be 3.20 μM−1 min−1 (Supporting Material), the dissociation rate (koff) of GDP for the chimera was determined to be 16.6 s−1 (vs. 144 s−1 for wtNFeoB; Designation mGMPPNP mGDP Protein kona (μM−1 min−1) koffb (min−1) Kdc (μM) kond (μM−1 min−1) koffe (s−1) NFeoB 8.1 ± 0.1 78.6 ± 1.6 9.7 15.9 144.7 ± 2.0 Chimera 3.2 ± 0.1 208.2 ± 1.3 65.1 0.2 16.61 ± 0.50