首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
A cytochrome b complex and cytochrome oxidase have been purified 14- and 20-fold respectively from yeast submitochondrial particles by a simple procedure involving their spontaneous precipitation from a deoxycholate extract. The recovery of both proteins was almost quantitative. The specific heme contents were 11 and 8 nmoles/mg protein for the cytochrome b complex and cytochrome oxidase respectively and both were spectrally pure. Sodium dodecyl sulfate gel electrophoresis resolved the cytochrome b complex into seven distinct subunits with molecular weights 42, 000, 33, 000, 27, 500, 23, 000, 15, 500, 13, 000 and 10, 500. Cytochrome oxidase contained five bands with molecular weights 42, 000, 26, 500, 21, 000, 14, 000 and 10, 500. Much of the cytochrome b complex (and all of the cytochrome oxidase) could be resolubilized in aqueous buffer following precipitation from the deoxycholate extract. The fraction of the cytochrome b preparation which remained insoluble appeared identical to the soluble protein in terms of polypeptide composition but contained less phospholipid and bound detergent, suggesting that insolubility may result from interaction between hydrophobic regions otherwise occupied by amphiphiles. The soluble cytochrome b complex migrated as a single species upon analytical ultracentrifugation and column chromatography, and during electrophoresis on polyacrylamide gels. Triton X-100, urea, or bile salts, failed to dissociate the complex. These findings suggest that the subunits are tightly associated in situ.  相似文献   

2.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

3.
A cytochrome b560-d complex, a terminal oxidase in the respiratory chain of Photobacterium phosphoreum grown under aerobic conditions, was purified to near homogeneity. The purified oxidase complex is composed of equimolar amounts of two polypeptides with molecular weights of 41,000 and 54,000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 10.2 nmol of protoheme and 22.5 nmol of iron/mg of protein. The enzyme is a "cytochrome bd-type oxidase," showing absorption peaks at 560 and 625 nm in its reduced minus oxidized difference spectrum at 77K. This oxidase combined with CO, and its CO difference spectrum at room temperature in the Soret region showed a peak at 418 nm and a trough at 434 nm. In addition, a trough at 560 nm (cytochrome b), and a trough at 620 nm and a peak at 639 nm (cytochrome d) were observed in the CO-binding spectrum. This cytochrome b560-d complex catalyzed the oxidation of ubiquinol-1 and ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride or phenazine methosulfate. The oxidase activity required phospholipids and was inhibited by the respiratory inhibitors, KCN and NaN3, and the divalent cation, ZnSO4. Formation of a membrane potential by the cytochrome b560-d complex reconstituted into liposomes was observed with the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide, on the addition of ubiquinol-1, showing that the enzyme provided a coupling site for oxidative phosphorylation.  相似文献   

4.
Photoautotrophically grown cyanobacterium Nostoc sp. strain Mac (PCC 8009) released up to about 10 nmol of a c-type cytochrome per ml packed cells after treatment with EDTA under conditions that left the plasma membrane absolutely intact as judged from the absence of cytosolic proteins in the supernatant. Spectra of the ascorbate reduced cytochrome revealed peaks at 553, 522 and 416 nm. The protein was purified to an A-553/A-275 ratio of 0.8. Midpoint potential (at pH 7), isoelectric point and apparent molecular weight of the cytochrome were +0.35 V, 8.6, and around 10,500, respectively. The cytochrome proved to be an excellent electron donor to the aa3-type cytochrome oxidase in both plasma and thylakoid membranes isolated and purified from Nostoc Mac. Chemoheterotrophic growth of the cells increased the level of periplasmic cytochrome c up to 10-fold and cytochrome oxidase activity of plasma membranes up to 90-fold. The periplasmic cytochrome also transferred electrons to photosystem I in illuminated thylakoid membranes. We conclude that cyanobacteria contain a periplasmic c-type cytochrome presumably identical to so-called cytochrome c6 or c-553 which has long been known as a photosynthetic (i.e. thylakoid-associated) redox protein in these organisms, and which is capable of donating electrons (from the periplasmic space) to the cytochrome oxidase in the plasma membrane and (from the thylakoid lumen) to both P700 and cytochrome oxidase in the thylakoid membrane.  相似文献   

5.
The aerobic respiratory chain of Escherichia coli is branched. In aerobically grown cells harvested in midexponential phase, a respiratory chain containing only b-type cytochromes is predominant. This chain contains a terminal oxidase which is a b-type cytochrome, referred to as cytochrome o. However, when the bacteria are grown under conditions of oxygen limitation, additional components of the respiratory chain are induced, as evidenced by the appearance of new spectroscopic species. These include a new b-type cytochrome, cytochrome b558, as well as cytochrome a1 and cytochrome d. In this paper, a purification protocol and the initial characterization of the terminal oxidase complex containing cytochrome d are reported. Solubilization of the membrane is effected by Zwittergent 3-12, and purification is accomplished by chromatography with DEAE-Sepharose CL-6B and hydroxyapatite. The complex contains cytochrome b558, a1, and d. Analysis by sodium dodecyl sulfate-polyacrylamide gels indicates that the complex contains only two types of polypeptides with the molecular weights estimated to be 57,000 and 43,000. The purified complex has oxidase activity in the presence of detergents, utilizing substrates including ubinquinol-1, N,N,N',N'-tetramethyl-p-phenylenediamine, and 2,3,5,6-tetramethyl-p-phenylenediamine. The cytochrome d complex contains protoheme IX and iron, but does not contain nonheme iron or copper. Approximately half of the cytochromes which are thought to participate in E. coli aerobic respiration are accounted for by this single complex. These results suggest that the E. coli aerobic respiratory chain is organized around a relatively small number of cytochrome-containing complexes.  相似文献   

6.
Evidence for the presence of a quinol oxidase super-complex composed of a cytochrome bc1 complex and cytochrome oxidase in the respiratory chain of a Gram-positive thermophilic bacterium PS3 is reported. On incubation with an octyl glucoside-solubilized fraction of the total membranes of PS3 anti-serum against PS3 cytochrome oxidase gave an immunoprecipitate that showed both quinol-cytochrome c reductase and cytochrome c oxidase activities. When the cholate-deoxycholate and LiCl-treated membranes of PS3 were solubilized and subjected to ion-exchange chromatography in the presence of octaethyleneglycol dodecyl ether, most of the A-, B-, and C-type cytochromes were copurified as a peak having both quinol-cytochrome c reductase and cytochrome oxidase activities. The immunoprecipitate and quinol oxidase preparation contained hemes a, b, and c in a ratio of about 2:2:3, indicating the presence of one-to-one complex of cytochrome oxidase containing 2 hemes a and one heme c, and a bc1 complex containing 2 hemes b and 2 hemes c. Gel electrophoresis in the presence of dodecyl sulfate showed that the immunoprecipitate and quinol oxidase preparation were composed of seven subunits; those of 51 (56-kDa), 38, and 22 kDa for cytochrome oxidase and those of 29, 23, 21, and 14 kDa for the bc1 complex. The 38-, 29-, and 21 kDa components possessed covalently bound heme c. The apparent molecular mass of the super complex was estimated to be as 380 kDa by gel filtration.  相似文献   

7.
Studies of the respiratory electron transport pathway in the blue-green alga, Aphanocapsa, demonstrated the presence of cytochrome oxidase and a cytochrome complex. The use of antimycin A showed only the occurrence of a plastidal type of cytochrome complex (the cytochrome b6-f complex), which is insensitive to this inhibitor. Determination of the extent of photooxidation of cytochromes c-553 and f-556 under conditions of high and low cytochrome oxidase activities indicated an electron flow through both cytochromes to cytochrome oxidase. Direct evidence for a common segment of photosynthetic and respiratory electron transport from plastoquinone via the cytochrome b6-f complex to the soluble plastocyanin/cytochrome c-553 pool, as well as a competition between cytochrome oxidase and Photosystem I for reductants in this pool in the light, was obtained by measurements of electron transport with suitable electron donors in this alga.  相似文献   

8.
Paclet MH  Coleman AW  Vergnaud S  Morel F 《Biochemistry》2000,39(31):9302-9310
NADPH oxidase activity depends on the assembly of the cytosolic activating factors, p67-phox, p47-phox, p40-phox, and Rac with cytochrome b(558). The transition from an inactive to an active oxidase complex induces the transfer of electrons from NADPH to oxygen through cytochrome b(558). The assembly of oxidase complex was studied in vitro after reconstitution in a heterologous cell-free assay by using true noncontact mode atomic force microscopy. Cytochrome b(558) was purified from neutrophils and Epstein-Barr virus-immortalized B lymphocytes and incorporated into liposomes. The effect of protein glycosylation on liposome size and oxidase activity was investigated. The liposomes containing the native hemoprotein purified from neutrophils had a diameter of 146 nm, whereas after deglycosylation, the diameter was reduced to 68 nm, although oxidase activity was similar in both cases. Native cytochrome b(558) was used after purification in reconstitution experiments to investigate the topography of NADPH oxidase once it was assembled. For the first time, atomic force microscopy illustrated conformational changes of cytochrome b(558) during the transition from the inactive to the active state of oxidase; height measurements allow the determination of a size of 4 nm for the assembled complex. In the processes that were studied, p67-phox displayed a critical function; it was shown to be involved in both assembly and activation of oxidase complex while p47-phox proceeded as a positive effector and increased the affinity of p67-phox with cytochrome b(558), and p40-phox stabilizes the resting state. The results suggest that although an oligomeric structure of oxidase machinery has not been demonstrated, allosteric regulation mechanisms may be proposed.  相似文献   

9.
1. The cytochrome content of beef liver mitochondria differs from that of beef heart mitochondria by an eightfold lower cytochrome aa3 and a twofold lower cytochrome b and c + c1 content. 2. The kinetic properties of cytochrome c oxidases from beef liver and heart were measured with intact cytochrome c-depleted membranes, deoxycholate-dissolved membranes, and with the isolated enzymes at various cytochrome c concentrations with an oxygen electrode. Under all conditions a higher V was found for the liver enzyme, both for the low-affinity and for the high-affinity binding site for cytochrome c. Differences were also found for the Km of the two enzymes. 3. Isolated beef heart mitochondria contained about twice as much cardiolipin than beef liver mitochondria. The isolated enzymes contained one mole cardiolipin per mole of the heart enzyme, but 2 moles cardiolipin per mole of the liver enzyme. 4. By application of a high performance sodium dodecylsulfate gel electrophoretic system the two isolated enzymes could be separated into 13 different protein components, three of which (polypeptides VIa, VIIa and VIII) were found to differ in their apparent molecular weights. The functional meaning of cytochrome c oxidase isoenzymes in liver and heart is discussed.  相似文献   

10.
1. By the application of the principle of the sequential fragmentation of the respiratory chain, a simple-method has been developed for the isolation of phospholipid-depleted and phospholipid-rich cytochrome oxidase preparations. 2. The phospholip-rich oxidase contains about 20% lipid, including mainly phosphatidylethanolamine, phosphatidylcholine, and cardiolipin. Its enzymic activity is not stimulated by an external lipid such as asolectin. 3. The phospholipid-depleted oxidase contains less than 0.1% lipid. It is enzymically inactive in catalyzing the oxidation of reduced cytochrome c by molecular oxygen. This activity can be fully restored by asolectin; and partially restored (approximately 75%) by purified phospholipids individually or in combination. The activity can be partially restored also by phospholipid mixtures isolated from mitochondria, from the oxidase itself, and from related preparations. Among the detergents tested only Emasol-1130 and Tween 80 show some stimulatory activity. 4. The phospholipid-depleted oxidase binds with cytochrome c evidently by "protein-protein" interactions as does the phospholipid-rich or the phospholipid-replenished oxidase to form a complex with the ratio of cytochrome c to heme a of unity. The complex prepared from phospholipid-depleted cytochrome oxidase exhibits a characteristic Soret absorption maximum at 415 nm in the difference spectrum of the carbon monoxide-reacted reduced form minus the reduced form. This 415-nm maximum is abolished by the replenishment of the complex with a phospholipid or by the dissociation of the complex in cholate or in a medium of high ionic strength. When ascorbate is used as an electron donor, the complex prepared from phospholipid-depleted cytochrome oxidase does not cause the reduction of cytochrome a3 which is in dramatic contrast to the complex from the phospholipid-rich or the phospholipid-replenished oxidase. However, dithionite reduces cytochrome a3 in all of the preparations of the cytochrome c-cytochrome oxidase complex. These facts suggest that the action of phospholipid on the electron transfer in cytochrome oxidase may be at the step between cytochromes a and a3. This conclusion is substantiated by preliminary kinetic results that the electron transfer from cytochrome a to a3 is much slower in the phospholipid-depleted than in phospholipid-rich or phospholipid-replenished oxidase. On the basis of the cytochrome c content, the enzymic activity has been found to be about 10 times higher in the system with the complex (in the presence of the replenishedhe external medium unless energy is provided, and that  相似文献   

11.
The subunit composition of cytochrome c oxidase from rat liver mitochondria was studied by dodecylsulfate polyacrylamide gel electrophoresis. The apparent molecular weight of the seven subunits are in reasonable agreement with published data on cytochrome c oxidase subunits from other sources. Two additional subunits were found if the electrophoresis was performed with 8m urea, due to splitting of the smallest subunit. Performic acid oxidation of the isolated subunits I and II increased the apparent molecular weights from 38000 to 48000 and from 24500 to 29000, respectively, accompained by a normalization of the anomalous behaviour of subunit I in the Ferguson plot. It is suggested that performic acid, by splitting extremely inaccessible disulfide bridges, mediates full complexing of the subunits by dodecylsulfate, thus permitting the determination of the real molecular weights by dodecylsulfate polyacrylamide gel electrophoresis.  相似文献   

12.
A spectrally pure cytochrome b complex has been isolated from yeast mitochondria and shown to contain seven nonidentical subunits with the following molecular weights: I, 42,000; II, 33,000; III, 27,500; IV, 23,000; V, 15,500; VI, 13,000; and VII, 10,500. In order to determine the intracellular sites of translation of these polypeptides, yeast cells were labeled with [3H]leucine in the presence of specific inhibitors of mitochondrial or cytoplasmic translation. The labeling of subunits I and III was found to be insensitive to cycloheximide but was inhibited by chloramphenicol. Alternatively, subunits IV–VII were labeled in the presence of chloramphenicol but not in the presence of cycloheximide. Since subunit II was not significantly labeled in the presence of either inhibitor, the technique of labeling in vivo with [3H]formate was used to establish its site of biogenesis. Formate is incorporated by mitochondrial, but not cytoplasmic, ribosomes as N-formylmethionine at initiation and is therefore a marker for the products of mitochondrial translation. Subunits I–III were labeled under these conditions whereas the four smallest subunits were not. Taken together, the findings clearly establish that the three largest subunits of the cytochrome b complex are translated on mitochondrial ribosomes and that the four smallest are formed in the cytoplasm. The results also underscore the advantages of using [3H]formate to identify the products of mitochondrial translation.  相似文献   

13.
Membranes were isolated by French pressure cell extrusion of lysozyme-preincubated cells of the cyanobacterium Synechocystis 6714 after growth in the presence of 0.4 M NaCl for 4 days. These cells showed up to 6-fold respiratory activity (oxygen uptake) when compared to control cells. Separation of plasma and thylakoid membranes revealed that the major part of cytochrome c oxidase was associated with the latter. Immunoblotting of sodium dodecylsulfate polyacrylamide gel electrophorized membranes with antisera raised against subunit I, subunit II, and the holoenzyme of the aa3-type cytochrome oxidase from Paracoccus denitrificans gave specific and complementary cross-reactions at apparent molecular weights of about 25 and 17-18 kDa, respectively. Crude membranes were solubilized also with n-octyl glucoside, and the cytochrome oxidase was separated from the extract by affinity chromatography using immobilized cytochrome c from Saccharomyces cerevisiae. The enzyme was eluted with KCl/octyl glucoside. Dialysed and concentrated enzyme solution, which was free of b- and c-type cytochromes, gave reduced alpha- and gamma-peaks around 603 and 443 nm, respectively. Upon treatment of the sample with carbon monoxide the peaks were found at 593 and 433 nm, respectively. Photodissociation spectra of the CO-complexed enzyme were in full agreement with cytochrome aa3 being a functional cytochrome oxidase in Synechocystis 6714.  相似文献   

14.
Treatment of molecular crystals of the bovine cytochrome oxidase and the cytochrome oxidase-cytochrome c complex with thermally activated tritium leads to highly labelled cytochrome oxidase preparations. HPLC separation of its subunits and measurements of radioactivity of each polypeptide allow to determine the shielding of cytochrome oxidase surface sites by cytochrome c in the complex.  相似文献   

15.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

16.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

17.
C D Georgiou  D A Webster 《Biochemistry》1987,26(20):6521-6526
Cytochrome o(561,564) terminal oxidase was solubilized from the membrane fraction of the bacterium Vitreoscilla sp., strain C1, and purified by differential pH dialysis, gel filtration chromatography, and ion-exchange chromatography. Subunit molecular weights, determined on sodium dodecyl sulfate-polyacrylamide gels by the Ferguson plot method, were 49,500 and 23,500. There were two protohemes IX, two coppers, and 45 mol of phosphorus per mole of protomer (73,000). The molecular weight of the cytochrome o complex estimated by chromatography on Sephacryl-400 in deoxycholate was 265,000, which is consistent with the enzyme complex under these conditions being a dimer (146,000) with the remaining molecular weight contribution arising from bound phospholipid, deoxycholate, and possibly other, smaller subunits. Difference spectra of the dithionite-reduced enzyme have split alpha absorption maxima at 561 and 564 nm at room temperature and 558 and 561 nm at 77 K. The CO difference spectrum at room temperature has absorption maxima at 570, 534, and 416 nm. Dissociation constants for CO and cyanide binding to the reduced and oxidized forms of the oxidase are 5.2 microM and 3.5 mM, respectively. The hemes in the cytochrome are one electron accepting centers, both with midpoint potentials around +165 mV at pH 7.0. The enzyme is highly autoxidizable, and its menadiol oxidizing activity is stimulated by phospholipids.  相似文献   

18.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

19.
A highly purified cytochrome b-c1 complex from Rhodopseudomonas sphaeroides R-26 was isolated by a procedure involving Triton X-100 solubilization, calcium phosphate column chromatography, and ammonium sulfate fractionation. The purified enzyme complex contains, in nanomoles/mg of protein, cytochrome b, 8.3; cytochrome c1, 8.3; iron-sulfur protein, 15; phospholipids, 182; and ubiquinone, 5. Four major polypeptides with apparent molecular weights of 48,000, 30,000, 24,000, and 12,000 were detected in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr = 48,000 and 30,000 proteins are cytochromes b and c1, respectively. The enzyme complex catalyzes electron transfer from ubiquinol to cytochrome c with a specific activity of 12.6 mumol of cytochrome c reduced per min/mg of protein at 23 degrees C. This is lower than that of the mitochondrial enzyme, although both systems have similar essential redox components and a similar Km for ubiquinol. The activity is fully sensitive to antimycin A and 5-n-undecyl-6-hydroxy-4, 7-dioxobenzothiazole. The enzyme complex is stable at neutral pH and at lower temperatures, but became less stable when the incubation temperature was raised. At 37 degrees C, the half-life is 15 min. The enzymatic activity was insensitive to treatment with N',N'-dicyclohexylcarbodiimide. No p-chloromercuriphenylsulfonate-alkylable sulfhydryl groups were detected. The major phospholipids associated with the purified enzyme complex are phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol with molar per cent distributions of 25, 21, and 35, respectively. About 60% of the enzymatic activity was abolished upon treatment with phospholipase A2. The phospholipase A2-inactivated activity can be partially restored by the addition of EDTA followed with phospholipids prepared from either the cytochrome b-c1 complex of the same source or a mixture of phosphatidylglycerol and asolectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Mouse embryo fibroblasts were grown in low and control O2 for 24 h (average medium oxygen tensions, 7 torr and 143 torr, respectively). Relative to controls, there was a reduction in radiolabeled subunits in immunoprecipitates of cytochrome oxidase and cytochrome b.c1 prepared from low O2 cells. Incorporation of radiolabeled amino acids into subunit I of cytochrome oxidase and the apocytochrome b protein of the b.c1 complex ranged from 51-100% of control, whereas the appearance of these pulse-labeled subunits into holoenzymes immunoprecipitated from low O2 cells was in the range of 6-39% of control. The synthesis of subunit II of cytochrome oxidase by low O2 cells ranged from 63-100% of control, and assembly of this protein into the low O2 immunoprecipitated enzyme ranged from 15-61% of control. Thus, the data suggest that O2 had an effect on the assembly of these mitochondrially translated proteins that was independent of any effect on their synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号