首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aggregation of α-synuclein (αSyn) in neurons produces the hallmark cytopathology of Parkinson disease and related synucleinopathies. Since its discovery, αSyn has been thought to exist normally in cells as an unfolded monomer. We recently reported that αSyn can instead exist in cells as a helically folded tetramer that resists aggregation and binds lipid vesicles more avidly than unfolded recombinant monomers (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107–110). However, a subsequent study again concluded that cellular αSyn is an unfolded monomer (Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E., and Lashuel, H. A. (2012) J. Biol. Chem. 287, 15345–15364). Here we describe a simple in vivo cross-linking method that reveals a major ∼60-kDa form of endogenous αSyn (monomer, 14.5 kDa) in intact cells and smaller amounts of ∼80- and ∼100-kDa forms with the same isoelectric point as the 60-kDa species. Controls indicate that the apparent 60-kDa tetramer exists normally and does not arise from pathological aggregation. The pattern of a major 60-kDa and minor 80- and 100-kDa species plus variable amounts of free monomers occurs endogenously in primary neurons and erythroid cells as well as neuroblastoma cells overexpressing αSyn. A similar pattern occurs for the homologue, β-synuclein, which does not undergo pathogenic aggregation. Cell lysis destabilizes the apparent 60-kDa tetramer, leaving mostly free monomers and some 80-kDa oligomer. However, lysis at high protein concentrations allows partial recovery of the 60-kDa tetramer. Together with our prior findings, these data suggest that endogenous αSyn exists principally as a 60-kDa tetramer in living cells but is lysis-sensitive, making the study of natural αSyn challenging outside of intact cells.  相似文献   

3.
Recombinant triosephosphate isomerase from the parasite Giardia lamblia (GlTIM) was characterized and immunolocalized. The enzyme is distributed uniformly throughout the cytoplasm. Size exclusion chromatography of the purified enzyme showed two peaks with molecular weights of 108 and 55 kDa. Under reducing conditions, only the 55-kDa protein was detected. In denaturing gel electrophoresis without dithiothreitol, the enzyme showed two bands with molecular weights of 28 and 50 kDa; with dithiotretitol, only the 28-kDa protein was observed. These data indicate that GlTIM may exist as a tetramer or a dimer and that, in the former, the two dimers are covalently linked by disulfide bonds. The kinetics of the dimer were similar to those of other TIMs. The tetramer exhibited half of the kcat of the dimer without changes in the Km. Studies on the thermal stability and the apparent association constants between monomers showed that the tetramer was slightly more stable than the dimer. This finding suggests the oligomerization is not related to enzyme thermostability as in Thermotoga maritima. Instead, it could be that oligomerization is related to the regulation of catalytic activity in different states of the life cycle of this mesophilic parasite.  相似文献   

4.
Mouse mast cell protease (mMCP) 6 and mMCP-7 are homologous tryptases stored in granules as macromolecular complexes with heparin and/or chondroitin sulfate E containing serglycin proteoglycans. When pro-mMCP-7 and pseudozymogen forms of this tryptase and mMCP-6 were separately expressed in insect cells, all three recombinant proteins were secreted into the conditioned medium as properly folded, enzymatically inactive 33-kDa monomers. However, when their propeptides were removed, mMCP-6 and mMCP-7 became enzymatically active and spontaneously assumed an approximately 150-kDa tetramer structure. Heparin was not required for this structural change. When incubated at 37 degrees C, recombinant mMCP-7 progressively lost its enzymatic activity in a time-dependent manner. Its N-linked glycans helped regulate the thermal stability of mMCP-7. However, the ability of this tryptase to form the enzymatically active tetramer was more dependent on a highly conserved Trp-rich domain on its surface. Although recombinant mMCP-6 and mMCP-7 preferred to form homotypic tetramers, these tryptases readily formed heterotypic tetramers in vitro. This latter finding indicates that the tetramer structural unit is a novel way the mast cell uses to assemble varied combinations of tryptases.  相似文献   

5.
Type A atrial natriuretic peptide (ANP) receptor was demonstrated to be present as a tetramer in the bovine adrenal cortex. Type A ANP receptor is composed of two functional domains, namely extracellular ANP-binding and cytoplasmic guanylate cyclase domains, and generally considered to be present as a single polypeptide chain of about 140 kDa based on its primary structure deduced from the cDNA sequence and its SDS/PAGE profile under reducing conditions. Characterization of the type A receptor or receptor/cyclase under non-reducing conditions led to the discovery stated in the title. The type A ANP receptor was partially purified from bovine adrenal cortex membranes by Blue-Sepharose and GTP-agarose chromatography. SDS-PAGE analysis of the receptor preparation revealed that although under reducing conditions it migrated as a 140-kDa band, the mobility of the receptor was greatly retarded in the absence of reducing agents, suggesting that the type A ANP receptor is present as a disulfide-linked oligomer in its native state. Further analysis using SDS-polyacrylamide-agarose gels suitable for determining the sizes of high-molecular-weight proteins revealed that the oligomer has an Mr of 500,000-550,000. This result clearly indicates that the native form of the type A receptor is a tetramer composed of four 140-kDa disulfide-linked receptor/cyclase molecules.  相似文献   

6.
In mammalian brain, acetylcholinesterase (AChE) exists mostly as a tetramer of 70-kDa catalytic subunits that are linked through disulfide bonds to a hydrophobic subunit P of approximately 20 kDa. To characterize P, we reduced the disulfide bonds in purified bovine brain AChE and sequenced tryptic fragments from bands in the 20-kDa region. We obtained sequences belonging to at least two distinct proteins: the P protein and another protein that was not disulfide-linked to catalytic subunits. Both proteins were recognized in Western blots by antisera raised against specific peptides. We cloned cDNA encoding the second protein in a cDNA library from bovine substantia nigra and obtained rat and human homologs. We call this protein mCutA because of its homology to a bacterial protein (CutA). We could not demonstrate a direct interaction between mCutA and AChE in vitro in transfected cells. However, in a mouse neuroblastoma cell line that produced membrane-bound AChE as an amphiphilic tetramer, the expression of mCutA antisense mRNA eliminated cell surface AChE and decreased the level of amphiphilic tetramer in cell extracts. mCutA therefore appears necessary for the localization of AChE at the cell surface; it may be part of a multicomponent complex that anchors AChE in membranes, together with the hydrophobic P protein.  相似文献   

7.
8.
Hydrodynamic, chromatographic, and spectroscopic techniques were used to study the aqueous solution properties of the two structural domains of human apolipoprotein (apo) E3. An amino-terminal thrombolytic fragment of apoE (22 kDa, residues 1-191) and a carboxyl-terminal thrombolytic fragment of apoE (10 kDa, residues 216-299) were used as models for the two domains. Sedimentation equilibrium ultracentrifugation showed that apoE and the 10-kDa model domain self-associated predominantly as tetramers. The 22-kDa model domain was primarily monomeric. Molecular weights calculated from the weight average sedimentation and diffusion coefficients or from the sedimentation coefficients and Stokes radii were in agreement with the sedimentation equilibrium results. Derived frictional coefficients suggest larger axial ratios and/or more extensive hydration for the apoE and the 10-kDa domain tetramers as compared with the 22-kDa domain. Proteolysis of apoE followed by high performance liquid chromatography showed rapid production of free 22-kDa domain, whereas the free 10-kDa domain appeared as a tetramer late in the course of the hydrolysis. Assessment by circular dichroism demonstrated that both model domains and apoE had over 54% alpha-helical content, which changed little in a detergent (octyl-beta-D-glucopyranoside) or lipid (dimyristoylphosphatidylcholine) environment. In contrast to the circular dichroism results, apoE and the 10-kDa domain showed a marked blue shift in the fluorescence maximum in a lipid environment. The results suggest that the self-association of apoE in solution as a tetramer is mediated by the carboxyl-terminal domain and that the amino- and carboxyl-terminal domains do not associate with one another. The amino-terminal domain is most likely compact and globular, whereas the carboxyl-terminal domain is probably elongated. The isolated model domains appear to have structures that are similar to those of the domains in the intact protein.  相似文献   

9.
Isolation and characterization of bovine haptoglobin from acute phase sera   总被引:3,自引:0,他引:3  
A macromolecular hemoglobin-binding protein, which was not detectable in normal bovine sera but appeared during acute phase inflammation, was purified, characterized, and designated as bovine haptoglobin (Hp). The purified protein had a molecular mass of 1,000-2,000 kDa, and was composed of two kinds of peptides, a 20-kDa peptide (alpha chain) and a 35-kDa glycopeptide (beta chain) linked by disulfide bonds. Amino acid composition and N-terminal sequence analyses revealed that both peptides were homologous to each counterpart of human Hp. Studies using some reducing reagents proved that highly polymerized Hp in serum was composed of 2-20 polymerized forms of alpha 2 beta 2 tetramer. Hp could bind one molecule of hemoglobin/alpha 2 beta 2 unit. Hp with smaller sizes obtained from native Hp by partial reduction with cysteine showed almost the same Hb-binding capacity.  相似文献   

10.
Human plasma carboxypeptidase N is a 280-kDa tetramer with two high molecular mass (83-kDa) glycosylated subunits which protect the two 50-kDa catalytic subunits and keep them in the circulation. An initial clone for the 83-kDa subunit was obtained by screening two lambda gt11 human liver cDNA expression libraries with antiserum specific for carboxypeptidase N or the 83-kDa subunit. The libraries were rescreened with the labeled cloned cDNA, and the largest clone obtained (2536-base pair insert) was completely sequenced. The deduced protein sequence matched the sequence of several tryptic peptides from the 83-kDa subunit but did not contain the NH2-terminal sequence. The remaining portion of the protein coding sequence was synthesized by the polymerase chain reaction, cloned, and sequenced. The composite cDNA sequence is 2870 base pairs long with an open reading frame of 1608 base pair coding for a protein of 536 amino acids (Mr = 58,762). The protein sequence contains seven potential N-linked glycosylation sites and a threonine/serine-rich region which is a potential site for attachment of O-linked carbohydrate. The most striking feature is a region (residues 68-355) containing 12 leucine-rich tandem repeats of 24 residues with the following consensus sequence: P-X-X-alpha-F-X-X-L-X-X-L-X-X-L-X-L-X-X-N-X-L-X-X-L (X = any amino acid and alpha = aliphatic amino acids, I, L, or V). This repeating pattern is found in the leucine-rich alpha 2-glycoprotein and in other proteins where it might mediate interactions with macromolecules. This region also contains five sequences with heptad repeating leucine residues comprising a leucine zipper motif. The leucine-rich domain likely constitutes an important structural or functional element in the interactions of the 83- and 50-kDa subunits to form the active tetramer of carboxypeptidase N.  相似文献   

11.
Ankyrin mediates the primary attachment between beta spectrin and protein 3. Ankyrin and spectrin interact in a positively cooperative fashion such that ankyrin binding increases the extent of spectrin tetramer and oligomer formation (Giorgi and Morrow: submitted, 1988). This cooperative interaction is enhanced by the cytoplasmic domain of protein 3, which is prepared as a 45-41-kDa fragment generated by chymotryptic digestion of erythrocyte membranes. Using sensitive isotope-ratio methods and nondenaturing PAGE, we now demonstrate directly (1) the enhanced affinity of ankyrin for spectrin oligomers compared to spectrin dimers; (2) a selective stimulation of the affinity of ankyrin for spectrin oligomer by the 43-kDa cytoplasmic domain of protein 3; and (3) a selective reduction in the affinity of ankyrin for spectrin tetramer and oligomer after its phosphorylation by the erythrocyte cAMP-independent membrane kinase. The phosphorylation of ankyrin does not affect its binding to spectrin dimer. Ankyrin also enhances the rate of interconversion between dimer-tetramer-oligomer by 2-3-fold at 30 degrees C, and in the presence of the 43-kDa fragment, ankyrin stimulates the rate of oligomer interconversions by nearly 40-fold at this temperature. These results demonstrate a long-range cooperative interaction between an integral membrane protein and the peripheral cytoskeleton and indicate that this linkage may be regulated by covalent protein phosphorylation. Such interactions may be of general importance in nonerythroid cells.  相似文献   

12.
Expression of fusion protein trypsin-streptavidin (TRYPSA)4 in Escherichia coli was evaluated and the protein purified. Protein expression was induced by 1 mM isopropylthio--D-galactoside (IPTG), and the enzyme activity was measured by the hydrolysis rate of p-toluenesulfonyl-l-arginine methyl ester (TAME). Expression of the fusion protein in the cell-free extract decreased with increased induction time; correspondingly, that in the inclusion bodies increased. The total expression in Luria–Bertani broth (LB) and Terrific Broth (TB) media reached the highest levels in 2 hr at 30°C. The optimum expression level was 35 and 48 U/L in LB and TB, respectively. Expression of the fusion protein was verified by Western Blot analysis using streptavidin antiserum, and the fusion protein was purified using a benzamidine Sepharose 6B affinity column at room temperature. The molecular size of the soluble purified fusion protein was determined by size-exclusion chromatography using Superose 12 FPLC. A molecular weight of 39–40 kDa was obtained, indicating that the soluble protein exists as a monomer; thus, the presence of the trypsin domain must prevent the streptavidin domain from tetramer formation.  相似文献   

13.
A nonhistone chromatin protein (NHCP) has been purified to homogeneity from a 0.5 M NaCl extract of Ehrlich ascites tumor cell (EAT cell) nuclei as a phosphate acceptor for casein kinase II using ion-exchange column chromatographies and Sephacryl S300 gel filtration. The purified NHCP (approximate Mr = 400,000) was found to be a tetramer of an Mr = 98,000 polypeptide (pI = 6.9) and to have high contents of glycine (15%) and serine (11.6%). This protein (designated as 400-kDa NHCP) was highly phosphorylated by casein kinase II (Mr = 130,000), but not by histone kinase. Casein kinase II phosphorylated only seryl residues of the purified 400-kDa NHCP. The NHCP bound with DNA, but not with RNAs, and the DNA binding ability of the protein was reduced when it was phosphorylated by casein kinase II. Moreover, we found that (a) the 400-kDa NHCP is present in large quantities in malignant mouse cells, such as EAT, EL-4, and Meth-A cells, but only slightly in normal tissues and cells; (b) the protein level is rapidly increased when mouse lymphocytes are treated with recombinant interleukin 2 (T cell growth factor) or concanavalin A; and (c) the kinase responsible for the 400-kDa NHCP phosphorylation in the chromatin of various mouse cells is a casein kinase II. These experimental results suggest that the 400-kDa NHCP acts as an effective phosphate acceptor for casein kinase II at the chromatin level and that an increased phosphorylation of the protein by the kinase may be implicated in the progress of cell differentiation and proliferation.  相似文献   

14.
The quaternary structure and binding activity of the murine 46-kDa mannose 6-phosphate receptor (46MPR) were studied in semi-intact murine cells that overexpress the murine receptor. Chemical cross-linking studies showed that the murine 46MPR exists in monomer, dimer, and tetramer forms in membranes of overexpressing murine cells. Treatment of permeabilized cells with Mn2+ increased the tetramer form of 46MPR, and this tetramerization was reversed by removal of Mn2+. Thus, the divalent cations affected the distribution of receptor among the three forms, favoring tetramerization at the expense of dimer and monomer. Low temperature (4 degrees C) also increases the fraction present as tetramer. The binding assay results show that Mn2+ is required for the 46MPR to achieve and retain the ability to bind ligand at 37 degrees C but not at 4 degrees C. Preincubation with Mn2+ produced a 3-fold increase in Man-6-P-specific binding of beta-glucuronidase which paralleled the 3-fold increase in tetramer seen during preincubation with Mn2+. The similarity of the effects of addition and removal of Mn2+ on enzyme binding to the effects of Mn2+ on favoring tetramer formation suggests that divalent cation-dependent tetramerization of the 46MPR contributes to the stimulation of ligand binding to the 46MPR by divalent cations.  相似文献   

15.
Using size-exclusion high-performance liquid chromatography, it is shown that phosphoenolpyruvate carboxylase from Crassula argentea, a crassulacean acid metabolism (CAM) plant, exists primarily in the form of a tetramer of a 100-kDa subunit at night and as a dimer of the same subunit during the day. The tetrameric enzyme from night leaves is not inhibited by malate, while the dimeric form from day leaves can be completely inhibited by malate. The purified day, or dimer, form of the enzyme can be converted to the tetramer by concentration and exposure to Mg2+. When thus converted, the tetramer is insensitive to malate inhibition, and is more strongly activated by glucose 6-phosphate than the dimer. The purified night, or tetramer, form is converted to the dimer by incubation for 60 min at pH 8.2. This enzyme may also be converted to the dimer by adding 1.5 mM malate to the elution buffer, but preincubation for 15 min with phosphoenolpyruvate prevents disaggregation when chromatographed with buffer containing malate. Preincubation with 1mM EDTA and subsequent chromatography with buffer containing malate shows a progressive dissociation of the tetrameric form with increasing time of preincubation. The implications of these observations for the diurnal regulation of phosphoenolpyruvate carboxylase in CAM metabolism are discussed.  相似文献   

16.
Poly(A) polymerases purified from rat liver nuclei consisted of two distinct species, a predominant enzyme of Mr = 38,000 and a minor one of Mr = 48,000. Prior to extensive purification, the minor enzyme constituted approximately 1% of the total liver poly(A) polymerase. Poly(A) polymerase purified from a rat tumor, Morris hepatoma 3924A, was comprised of a single species of Mr = 48,000 which was identical to the minor liver enzyme with respect to chromatographic and immunological characteristics. Gel filtration on Sephacryl S-200 using 0.3 M NaCl for elution showed that the major liver poly(A) polymerase had a molecular weight of 156,000, which corresponded to a tetramer of the 38-kDa polypeptide, whereas the hepatoma and minor liver 48-kDa species existed as dimers with a molecular weight of 96,000. Fractionation by Sephacryl S-200 resulted in complete loss of both liver poly(A) polymerase activities which could be restored by exogenous N1-type protein kinase. Following CNBr cleavage, the 48-kDa poly(A) polymerase from liver and hepatoma exhibited nearly identical peptide maps which were distinct from that of the major liver enzyme (38 kDa). Antibodies raised against tumor poly(A) polymerase reacted with the 48-kDa polypeptide but not with the 38-kDa liver enzyme. Immune complex formation was observed between seven of the eight CNBr cleavage products derived from the 48-kDa polypeptide of both liver and hepatoma. It is concluded that distinct genes in rat liver code for two structurally and immunologically unique nuclear poly(A) polymerases, one of which is identical to the enzyme from the hepatoma.  相似文献   

17.
Rhodiola fastigita is an alpine plant growing at 3300--5400 m above sea level. Seven crystal, compounds were isolated from the rhizome of this plant. They were identified as β- sitosterol, β-sitosterol-3-β-D-galactoside, daucosterol, gallic acid, gallic acid ethyl ester, p-tyrosol and herbacetin-8-arabinoside by IR, MS, H-NMR and chemical method. Daucosterol, β-sitosterol- 3-β-D-galactoside and gallic acid ethyl ester were obtained from the genus Rhodiola L. for the first time.  相似文献   

18.
This report demonstrates that specific proteolysis of brain spectrin by a calcium-dependent protease, calpain I, abolishes association of brain spectrin with the ankyrin-independent binding site(s) in brain membranes. Calpain I cleaves the beta subunit of spectrin at the N-terminal end leaving a 218-kDa fragment and cleaves the alpha subunit in the midregion to produce 150- and 130-kDa fragments. Calpain-proteolyzed spectrin almost completely loses the capacity to displace binding of intact spectrin to membranes. Spectrin digested by calpain I under conditions that almost completely destroyed membrane-binding remained associated as a tetramer and retained about 60% of the ability to associate with actin filaments. Cleavage of spectrin occurred at sites distinct from the membrane-binding site which is located on the beta subunit since the isolated 218-kDa fragment of the beta subunit as well as a reconstituted complex of alpha and 218-kDa beta subunit fragment partially regained binding activity. Moreover, cleavage of the alpha subunit alone reduced the affinity of spectrin for membranes by 2-fold. A consequence of distinct sites for calpain I cleavage and membrane-binding is that calpain I can digest spectrin while spectrin is complexed with other proteins and therefore has the potential to mediate disassembly of a spectrin-actin network from membranes.  相似文献   

19.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

20.
Abstract Candida utilis cells contain a regulatory trehalase enzyme (280 kDa) which can be activated by cAMP-dependent phosphorylation. A 100-fold purification of this enzyme activity results in the enrichment of a protein band of apparent M r 70 000 as identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). This component is phosphorylated in vivo under conditions in which trehalase activation occurs in whole cells. It is concluded that the trehalase enzyme might be a tetramer, composed of 4 identical 70-kDa subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号