首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

2.
The second step of eukaryotic N-linked glycosylation in endoplasmic reticulum is catalyzed by an UDP-N-acetylglucosamine transferase that is comprised of two subunits, Alg13 and Alg14. The interaction between Alg13 and 14 is crucial for UDP-GlcNAc transferase activity, so formation of the Alg13/14 complex is likely to play a key role in the regulation of N-glycosylation. Using a combination of bioinformatics and molecular biological methods, we have undertaken a functional analysis of yeast Alg13 and Alg14 proteins to elucidate the mechanism of their interaction. Our mutational studies demonstrated that a short C-terminal alpha-helix of Alg13 is required for interaction with Alg14 and for enzyme activity. Electrostatic surface views of the modeled Alg13/14 complex suggest the presence of a hydrophobic cleft in Alg14 that provides a pocket for the Alg13 C-terminal alpha-helix. Co-immunoprecipitation assays confirmed the C-terminal three amino acids of Alg14 are required for maintaining the integrity of Alg13/Alg14 complex, and this depends on their hydrophobicity. Modeling studies place these three Alg14 residues at the entrance of the hydrophobic-binding pocket, suggesting their role in the stabilization of the interaction between the C termini of Alg13 and Alg14. Together, these results demonstrate that formation of this hetero-oligomeric complex is mediated by a short C-terminal alpha-helix of Alg13 in cooperation with the last three amino acids of Alg14. In addition, deletion of the N-terminal beta-strand of Alg13 caused the destruction of protein, indicating the structural importance of this region in protein stability.  相似文献   

3.
BackgroundThe pathogenic potential of Candida albicans depends on adhesion to the host cells mediated by highly glycosylated adhesins, hyphae formation and growth of biofilm. These factors require effective N-glycosylation of proteins.Here, we present consequences of up- and down-regulation of the newly identified ALG13 gene encoding N-acetylglucosaminyl transferase, a potential member of the Alg7p/Alg13p/Alg14p complex catalyzing the first two initial reactions in the N-glycosylation process.MethodsWe constructed C. albicans strain alg13 ∆::hisG/TRp-ALG13 with one allele of ALG13 disrupted and the other under the control of a regulatable promoter, TRp. Gene expression and enzyme activity were measured using RT-qPCR and radioactive substrate. Cell wall composition was estimated by HPLC DIONEX. Protein glycosylation status was analyzed by electrophoresis of HexNAcase, a model N-glycosylated protein in C. albicans.ResultsBoth decreased and elevated expression of ALG13 changed expression of all members of the complex and resulted in a decreased activity of Alg7p and Alg13p and under-glycosylation of HexNAcase. The alg13 strain was also defective in hyphae formation and growth of biofilm. These defects could result from altered expression of genes encoding adhesins and from changes in the carbohydrate content of the cell wall of the mutant.General significanceThis work confirms the important role of protein N-glycosylation in the pathogenic potential of C. albicans.  相似文献   

4.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

5.
6.
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.  相似文献   

7.
We have previously shown that diabetogenic antibiotic streptozotocin (STZ), an analog of N-acetylglucosamine (GlcNAc), inhibits the enzyme O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase) which is responsible for the removal of O-GlcNAc from proteins. Alloxan, another beta-cell toxin is a uracil analog. Since the O-GlcNAc transferase (OGT) uses UDP-GlcNAc as a substrate, we investigated whether alloxan might interfere with the process of protein O-glycosylation by blocking OGT, a very abundant enzyme in beta-cells. In isolated pancreatic islets, alloxan almost completely blocked both glucosamine-induced and STZ-induced protein O-GlcNAcylation, suggesting that alloxan indeed was inhibiting (OGT). In order to show definitively that alloxan was inhibiting OGT activity, recombinant OGT was incubated with 0-10 mM alloxan, and OGT activity was measured directly by quantitating UDP-[(3)H]-GlcNAc incorporation into the recombinant protein substrate, nucleoporin p62. Under these conditions, OGT activity was completely inhibited by 1 mM alloxan with half-maximal inhibition achieved at a concentration of 0.1 mM alloxan. Together, these data demonstrate that alloxan is an inhibitor of OGT, and as such, is the first OGT inhibitor described.  相似文献   

8.
An investigation of the subunit structure of yeast enolase   总被引:1,自引:0,他引:1  
  相似文献   

9.
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.  相似文献   

10.
Solution structure of a tRNA with a large variable region: yeast tRNASer   总被引:15,自引:0,他引:15  
Different chemical reagents were used to study the tertiary structure of yeast tRNASer, a tRNA with a large variable region: ethylnitrosourea, which alkylates the phosphate groups; dimethylsulphate, which methylates N-7 of guanosine and N-3 of cytosine; and diethylpyrocarbonate, which modifies N-7 of adenine. The non-reactivity of N-3 of cytidine 47:1, 47:6, 47:7 and 47:8 and the reactivity of cytidine 47:3 confirms the existence of a variable stem of four base-pairs and a short variable loop of three residues. For the N-7 positions in purines, accessible residues are G1, G10, Gm18, G19, G30, I34, G35, A36, i6A37, G45, G47, G47:5, G47:9 and G73. The protection of N-7 atoms of residues G9, G15, A21, A22 and G47:9 reflects the tertiary folding. Strong phosphate protection was observed for P8 to P11, P20:1 to P22, P48 to P50 and for P59 and P60. A model was built on a PS300 graphic system on the basis of these data and its stereochemistry refined. While trying to keep most tertiary interactions, we adapted the tertiary folding of the known structures of tRNAAsp and tRNAPhe to the present sequence and solution data. The resulting model has the variable arm not far from the plane of the common L-shaped structure. A generalization of this model to other tRNAs with large variable regions is discussed.  相似文献   

11.
The yeast ATP synthase subunit 4: structure and function   总被引:1,自引:0,他引:1  
The structure of ATP synthase subunit 4 was determined by using the oligonucleotide probe procedure. This subunit is the fourth polypeptide of the complex when classifying subunits in order of decreasing molecular mass. Its relative molecular mass is 25 kDa. The ATP4 gene was isolated and sequenced. The nucleotide sequence predicts that subunit 4 is probably derived from a precursor protein 244 amino acids long. Mature subunit 4 contains 209 amino acid residues and the predicted molecular mass is 23250 kDa. Subunit 4 shows homology with the b-subunit of Escherichia coli ATP synthase and the b-subunit of beef heart mitochondrial ATP synthase. By using homologous transformation, a mutant lacking wild subunit 4 was constructed. This mutant is devoid of oxidative phosphorylation and F1 is loosely bound to the membrane. Our data are in favor of a structural relationship between subunit 4 and the mitochondrially-translated subunit 6 during biogenesis of F0.  相似文献   

12.
Twenty-five sugars have been compared as inhibitors of l-sorbose or d-xylose transport by the constitutive, monosaccharide transport system in bakers' yeast. d-Glucose showed the highest activity (i.e., apparent K(i) = 5 mm). Since all sugars except 2-deoxyglucose showed a decrease in activity relative to glucose (i.e., apparent K(i) = 25 - >2,000 mm), an attempt was made to relate the activity of each sugar with the way its structure differs from that of d-glucose. Assuming that the inhibition was the result of sugar-carrier complex formation, the analysis showed that the transport system has a rather broad specificity for pyranoses. Single changes at each of the five carbons of d-glucose (except for the 2-deoxy derivative) result in variable decreases in activity depending upon the carbon number and the alteration. The largest decrease in activity effected by a single change is the methylation or glucosylation of the anomeric hydroxyl. The combination of two or more changes leads to a decrease which is greater than the decrease in activity resulting from the individual changes occurring alone.  相似文献   

13.
Chemistry and subunit structure of yeast hexokinase isoenzymes   总被引:4,自引:0,他引:4  
Evidence from ultracentrifugation, sodium dodecyl sulfate electrophoresis, peptide mapping, and carboxypeptidase A digestion allows the conclusion that the two native hexokinases, P-I and P-II, consist of polypeptide chains having molecular weights slightly higher than 50,000. It was demonstrated that some preparations are contaminated with a protease, and that this impurity caused erroneous results in sodium dodecyl sulfate electrophoresis and carboxypeptidase A digestion.Amino acid analyses indicated that both P-I and P-II contain four cysteine, four tryptophan, and eleven methionine residues per mole. In contrast, P-I contains eight, and P-II five, histidine residues per mole. Many of the differences in amino acid composition are small, but reproducible.Peptide mapping indicated that many segments of P-I and P-II have identical sequences. There were about 27 common tryptic peptides, and about 16–19 unique to each form. In addition, both isozymes were found to have the same amino terminus, valine, and the same carboxy terminus, alanine; some evidence for a difference in the penultimate residue at the carboxy terminus was indicated.  相似文献   

14.
Periodate oxidation of the ribose of the 3′-terminal adenosine of yeast tRNAPhe followed by borohydride reduction has the net effect of splitting the C2′C3′ bond leaving two primary alcohol groups at these carbon atoms. This modified tRNA (tRNAox-red) could be acylated with phenylalanine but could not function as either a donor or acceptor at the peptidyl transferase center of the ribosome. Assays were performed with the phenylalanyl-pentanucleotides, CACCAox-red(acetylPhe) and CACCAox-red(Phe), which were isolated from the 3′-end of appropriately esterified tRNAox-red. Adoox-red(Phe) isolated from Phe-tRNAox-red was also inactive as an acceptor, but synthetic Adoox-red(Phe), a mixture of the 2′ and 3′ phenylalanyl esters, was active with an apparent Km of 1.16 mM compared to 0.2 mM for control Ado(Phe). These results are interpreted to mean that (1) biosynthetic aminoacylation of tRNAox-red occurs specifically at the 2′-hydroxyl, (2) there is no 2′:3′ tautomerization in the ring-opened structure, and (3) peptidyl transferase recognizes specifically the 3′-aminoacyl esters of tRNA.  相似文献   

15.
Shuxing Z  Ying WS  Siahaan TJ  Jois SD 《Peptides》2003,24(6):827-835
Cell-adhesion molecules are critical for immune response. It is well known that the inhibition of adhesion is very effective in immunotherapy and that the peptides derived from leukocyte function associated antigen (LFA-1) and intercellular adhesion molecule (ICAM-1) modulate cell-adhesion interaction. The three-dimensional structure of a cyclic peptide, Cyclo(1,12)Pen(1)-Asp(2)-Leu(3)-Ser(4)-Tyr(5)-Ser(6)-Leu(7)-Asp(8)-Asp(9)-Leu(10)-Arg(11)-Cys(12) (cLBEL) derived from the beta subunit of LFA-1 which is known to modulate homotypic T-cell-adhesion process has been studied using NMR, CD and molecular dynamics (MD) simulation. The peptide exhibits two possible conformations in solution. Structure I has a conformation with two consecutive beta-turns involving residues Tyr(5)-Ser(6)-Leu(7)-Asp(8) and Asp(9)-Leu(10)-Arg(11)-Cys(12). Structure II has a beta-turn at Tyr(5)-Ser(6)-Leu(7)-Asp(8) and forms a beta-hairpin type of conformation.  相似文献   

16.
The periplasmic polysulfide-sulfur transferase (Sud) protein encoded by Wolinella succinogenes is involved in oxidative phosphorylation with polysulfide-sulfur as a terminal electron acceptor. The polysulfide-sulfur is covalently bound to the catalytic Cys residue of the Sud protein and transferred to the active site of the membranous polysulfide reductase. The solution structure of the homodimeric Sud protein has been determined using heteronuclear multidimensional NMR techniques. The structure is based on NOE-derived distance restraints, backbone hydrogen bonds, and torsion angle restraints as well as residual dipolar coupling restraints for a refinement of the relative orientation of the monomer units. The monomer structure consists of a five-stranded parallel beta-sheet enclosing a hydrophobic core, a two-stranded antiparallel beta-sheet, and six alpha-helices. The dimer fold is stabilized by hydrophobic residues and ion pairs found in the contact area between the two monomers. Similar to rhodanese enzymes, Sud catalyzes the transfer of the polysulfide-sulfur to the artificial acceptor cyanide. Despite their similar functions and active sites, the amino acid sequences and structures of these proteins are quite different.  相似文献   

17.
18.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

19.
20.
Thore S  Mauxion F  Séraphin B  Suck D 《EMBO reports》2003,4(12):1150-1155
In Saccharomyces cerevisiae, a large complex, known as the Ccr4–Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 Å resolution. The domain has the fold of the DnaQ family and represents the first structure of an RNase from the DEDD superfamily. Despite the presence of two non-canonical residues in the active site, the domain displays RNase activity on a broad range of RNA substrates. Site-directed mutagenesis of active-site residues demonstrates the intrinsic ability of the Pop2 RNase D domain to digest RNA. This first structure of a nuclease involved in the 3′–5′ deadenylation of mRNA in yeast provides information for the understanding of the mechanism by which the Ccr4–Not complex achieves its functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号