首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

2.
Degradation of misfolded or unassembled proteins of the secretory pathway is an essential function of the quality control system of the Endoplasmic Reticulum (ER). Using yeast as a model organism we show that a mutated and therefore misfolded soluble lumenal protein carboxypeptidase yscY (CPY*), and a polytopic membrane protein, the ATP-binding cassette transporter Pdr5 (Pdr5*), are retrograde transported out of the ER and degraded via the cytoplasmic ubiquitin-proteasome system. Retrograde transport depends on an intact Sec61 translocon. Complete import of CPY* into the lumen of the ER requests a new targeting mechanism for retrograde transport of the malfolded enzyme through the Sec61 channel to occur. For soluble CPY*, but not for the polytopic membrane protein Pdr5* action of the ER-lumenal Hsp70 chaperone Kar2 is necessary to deliver the protein to the ubiquitin-proteasome machinery. Polyubiquitination of CPY* and Pdr5* by the ubiquitin conjugating enzymes Ubc6 and Ubc7 is crucial for degradation to occur. Also transport of CPY* out of the ER-lumen depends on ubiquitination. Newly discovered proteins of the ER membrane, Der1, Der3/Hrd1, and Hrd3 are specifically involved in the retrograde transport processes.  相似文献   

3.
Protein misfolding is monitored by a variety of cellular "quality control" systems. Endoplasmic reticulum (ER) quality control handles misfolded secretory and membrane proteins and is well characterized. However, less is known about the quality control of misfolded cytosolic proteins (CytoQC). To study CytoQC, we have employed a genetic system in Saccharomyces cerevisiae using a transplantable degron, CL1 (1). Attachment of CL1 to the cytosolic protein Ura3p destabilizes Ura3p, targeting it for rapid proteasomal degradation. We have performed a comprehensive analysis of Ura3p-CL1 degradation requirements. As shown previously, we observe that the ER-localized ubiquitin E2 (Ubc6p, Ubc7p, and Cue1p) and E3 (Doa10p) machinery involved in ER-associated degradation (ERAD) are also responsible for the degradation of the cytosolic substrate Ura3p-CL1. Importantly, we find that the cytosol/ER membrane-localized chaperones Ydj1p and Ssa1p, known to be necessary for the ERAD of membrane proteins with misfolded cytosolic domains, are also required for the ubiquitination and degradation of Ura3p-CL1. In addition, we show a role for the Cdc48p-Npl4p-Ufd1p complex in the degradation of Ura3p-CL1. When ubiquitination is blocked, a portion of Ura3p-CL1 is ER membrane-localized. Furthermore, access to the cytosolic face of the ER is required for the degradation of CL1 degron-containing proteins. The ER is distributed throughout the cytosol, and our data, together with previous studies, suggest that the cytosolic face of the ER membrane serves as a "platform" for the degradation of Ura3p-CL1, which may also be the case for other CytoQC substrates.  相似文献   

4.
Tail-anchored proteins are distinct from other membrane proteins as they are thought to insert into the endoplasmic reticulum (ER) membrane independently of Sec61p translocation pores. These pores not only mediate import but are also assumed to catalyze export of proteins in a process called ER-associated protein degradation (ERAD). In order to examine the Sec61p dependence of the export of tail-anchored proteins, we analyzed the degradation pathway of a tail-anchored ER membrane protein, the ubiquitin-conjugating enzyme 6 (Ubc6p). In contrast to other ubiquitin conjugating enzymes (Ubcs), Ubc6p is naturally short-lived. Its proteolysis is mediated specifically by the unique Ubc6p tail region. Degradation further requires the activity of Cue1p-assembled Ubc7p, and its own catalytic site cysteine. However, it occurs independently of the other ERAD components Ubc1p, Hrd1p/Der3p, Hrd3p and Der1p. In contrast to other natural ERAD substrates, proteasomal mutants accumulate a membrane-bound degradation intermediate of Ubc6p. Most interestingly, mutations in SEC61 do not reduce the turnover of full-length Ubc6p nor cause a detectable accumulation of degradation intermediates. These data are in accordance with a model in which tail-anchored proteins can be extracted from membranes independently of Sec61p.  相似文献   

5.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

6.
Work from several laboratories has indicated that many different proteins are subject to endoplasmic reticulum (ER) degradation by a common ER-associated machinery. This machinery includes ER membrane proteins Hrd1p/Der3p and Hrd3p and the ER-associated ubiquitin-conjugating enzymes Ubc7p and Ubc6p. The wide variety of substrates for this degradation pathway has led to the reasonable hypothesis that the HRD (Hmg CoA reductase degradation) gene-encoded proteins are generally involved in ER protein degradation in eukaryotes. We have tested this model by directly comparing the HRD dependency of the ER-associated degradation for various ER membrane proteins. Our data indicated that the role of HRD genes in protein degradation, even in this highly defined subset of proteins, can vary from absolute dependence to complete independence. Thus, ER-associated degradation can occur by mechanisms that do not involve Hrd1p or Hrd3p, despite their apparently broad envelope of substrates. These data favor models in which the HRD gene-encoded proteins function as specificity factors, such as ubiquitin ligases, rather than as factors involved in common aspects of ER degradation.  相似文献   

7.
Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocation remains controversial, with the potential candidates being Sec61p, Der1p, and Doa10. We show that the cytoplasmic N-terminal domain of a short-lived transmembrane ERAD substrate is exposed to the lumen of the ER during the degradation process. The addition of N-linked glycan to the N terminus of the substrate is prevented by mutation of a specific cysteine residue of Sec61p, as well as a specific cysteine residue of the substrate protein. We show that the substrate protein forms a disulfide-linked complex to Sec61p, suggesting that at least part of the retrotranslocation process involves Sec61p.  相似文献   

8.
T Gilon  O Chomsky    R G Kulka 《The EMBO journal》1998,17(10):2759-2766
Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes.  相似文献   

9.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

10.
In the endoplasmic reticulum (ER), nascent membrane and secreted proteins that are misfolded are retrotranslocated into the cytosol and degraded by the proteasome. For most ER-associated degradation (ERAD) substrates, ubiquitylation is essential for both their retrotranslocation and degradation. Yeast Doa10 is a polytopic membrane ubiquitin ligase (E3) that along with its cognate ubiquitin-conjugating enzymes (E2s), Ubc7 and the C-terminally membrane-anchored Ubc6, makes a major contribution to ER-associated degradation. Ubc6 is also a substrate of Doa10. One highly conserved Doa10 element, the uncharacterized ~130-residue TEB4-Doa10 domain, includes three transmembrane helices (TMs). We find that the first of these, TM5, includes an absolutely conserved ΦPΦXXG motif that is required for Doa10 function, as well as highly conserved negatively charged glutamate and aspartate residues. The conservative exchange of the TM5 glutamate to aspartate (doa10-E633D) results in complete stabilization of Ubc6 but has little if any effect on other substrates. Unexpectedly, mutating the glutamate to glutamine (doa10-E633Q) specifically accelerates Ubc6 degradation by ~5-fold. Other substrates are weakly stabilized in doa10-E633Q cells, consistent with reduced Ubc6 levels. Notably, catalytically inactive ubc6-C87A is degraded in doa10-E633Q but not wild-type cells, but an active version of Ubc6 is required in trans. Fusion of the Ubc6 TM to a soluble protein yields a protein that is degraded in a doa10-E633Q-dependent manner, whereas fusion of the C-terminal TM from an unrelated protein does not. These results suggest that the TEB4-Doa10 domain regulates Doa10 association with the Ubc6 membrane anchor, thereby controlling the degradation rate of the E2.  相似文献   

11.
12.
Many cystic fibrosis disease-associated mutations cause a defect in the biosynthetic processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Yeast mutants, defective at various steps of the secretory pathway, have been used to dissect the mechanisms of biosynthetic processing and intracellular transport of several proteins. To exploit these yeast mutants, we have employed an expression system in which the CFTR gene is driven by the promoter of a structurally related yeast ABC protein, Pdr5p. Pulse-chase experiments revealed a turnover rate similar to that of nascent CFTR in mammalian cells. Immunofluorescence microscopy showed that most CFTR colocalized with the endoplasmic reticulum (ER) marker protein Kar2p and not with a vacuolar marker. Degradation was not influenced by the vacuolar protease mutants Pep4p and Prb1p but was sensitive to the proteasome inhibitor lactacystin beta-lactone. Blocking ER-to-Golgi transit with the sec18-1 mutant had little influence on turnover indicating that it occurred primarily in the ER compartment. Degradation was slowed in cells deficient in the ER degradation protein Der3p as well as the ubiquitin-conjugating enzymes Ubc6p and Ubc7p. Finally a mutation (sec61-2) in the translocon protein Sec61p that prevents retrotranslocation across the ER membrane also blocked degradation. These results indicate that whereas approximately 75% of nascent wild-type CFTR is degraded at the ER of mammalian cells virtually all of the protein meets this fate on heterologous expression in Saccharomyces cerevisiae.  相似文献   

13.
We have studied components of the endoplasmic reticulum (ER) proofreading and degradation system in the yeast Saccharomyces cerevisiae. Using a der3–1 mutant defective in the degradation of a mutated lumenal protein, carboxypeptidase yscY (CPY*), a gene was cloned which encodes a 64-kDa protein of the ER membrane. Der3p was found to be identical with Hrd1p, a protein identified to be necessary for degradation of HMG-CoA reductase. Der3p contains five putative transmembrane domains and a long hydrophilic C-terminal tail containing a RING-H2 finger domain which is oriented to the ER lumen. Deletion of DER3 leads to an accumulation of CPY* inside the ER due to a complete block of its degradation. In addition, a DER3 null mutant allele suppresses the temperature-dependent growth phenotype of a mutant carrying the sec61–2 allele. This is accompanied by the stabilization of the Sec61–2 mutant protein. In contrast, overproduction of Der3p is lethal in a sec61–2 strain at the permissive temperature of 25°C. A mutant Der3p lacking 114 amino acids of the lumenal tail including the RING-H2 finger domain is unable to mediate degradation of CPY* and Sec61–2p. We propose that Der3p acts prior to retrograde transport of ER membrane and lumenal proteins to the cytoplasm where they are subject to degradation via the ubiquitin-proteasome system. Interestingly, in ubc6-ubc7 double mutants, CPY* accumulates in the ER, indicating the necessity of an intact cytoplasmic proteolysis machinery for retrograde transport of CPY*. Der3p might serve as a component programming the translocon for retrograde transport of ER proteins, or it might be involved in recognition through its lumenal RING-H2 motif of proteins of the ER that are destined for degradation.  相似文献   

14.
Bordallo J  Wolf DH 《FEBS letters》1999,448(2-3):244-248
Der3/Hrd1p is a protein required for proper degradation of misfolded soluble and integral membrane proteins in the endoplasmic reticulum (ER) in the yeast Saccharomyces cerevisiae. It is located to the ER membrane and consists of a N-terminal hydrophobic region with several transmembrane domains and a large hydrophilic tail oriented to the ER lumen containing a RING finger motif of the H2 class. We had previously reported that a truncated version of Der3p, Der3deltaRp, lacking 111 residues of the lumenal domain including the RING finger motif is not functional, suggesting the involvement of this domain in the function of the protein in ER degradation. We substantiated this hypothesis by constructing a mutated form of Der3/Hrd1p replacing the last cysteine of the motif with a serine. This mutated Der3(C399S) protein maintains the correct localization and topology of the wild-type protein, however, is not able to support the degradation of soluble and integral membrane proteins. This point mutation altering the RING-H2 motif behaves as a dominant allele especially when overexpressed from a 2mu plasmid by this increasing the half-life of CPY* more than 6-fold when compared with a wild-type strain. Furthermore coexpression of der3(C399S) with the wild-type allele is also able to partially suppress the temperature sensitive growth phenotype of a sec61-2 strain. Finally we have shown that overexpression of Hrd3p suppresses the dominant effect of the der3(C399S) mutation. These results could be explained by a competition between wild-type and mutant Der3 protein for the interaction with some other component of the ER degradation pathway, probably Hrd3p.  相似文献   

15.
Protein quality control is an essential function of the endoplasmic reticulum. Misfolded proteins unable to acquire their native conformation are retained in the endoplasmic reticulum, retro-translocated back into the cytosol, and degraded via the ubiquitin-proteasome system. We show that efficient degradation of soluble malfolded proteins in yeast requires a fully competent early secretory pathway. Mutations in proteins essential for ER-Golgi protein traffic severely inhibit ER degradation of the model substrate CPY*. We found ER localization of CPY* in WT cells, but no other specific organelle for ER degradation could be identified by electron microscopy studies. Because CPY* is degraded in COPI coat mutants, only a minor fraction of CPY* or of a proteinaceous factor required for degradation seems to enter the recycling pathway between ER and Golgi. Therefore, we propose that the disorganized structure of the ER and/or the mislocalization of Kar2p, observed in early secretory mutants, is responsible for the reduction in CPY* degradation. Further, we observed that mutations in proteins directly involved in degradation of malfolded proteins (Der1p, Der3/Hrd1p, and Hrd3p) lead to morphological changes of the endoplasmic reticulum and the Golgi, escape of CPY* into the secretory pathway and a slower maturation rate of wild-type CPY.  相似文献   

16.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

17.
The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (DeltassCPY* and DeltassCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (DeltassCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of DeltassCPY* to GFP-cODC to form DeltassCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.  相似文献   

18.
Endoplasmic reticulum‐associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro‐translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd‐Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY* proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins.  相似文献   

19.
Plemper RK  Deak PM  Otto RT  Wolf DH 《FEBS letters》1999,443(3):241-245
Misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently degraded by the cytosolic ubiquitin-proteasome system. This requires their retrograde transport from the ER lumen into the cytosol, which is mediated by the Sec61 translocon. It had remained a mystery whether ER-localised soluble proteins are at all capable of re-entering the Sec61 channel de novo or whether a permanent contact of the imported protein with the translocon is a prerequisite for retrograde transport. In this study we analysed two new variants of the mutated yeast carboxypeptidase yscY, CPY*: a carboxy-terminal fusion protein of CPY* and pig liver esterase and a CPY* species carrying an additional glycosylation site at its carboxy-terminus. With these constructs it can be demonstrated that the newly synthesised CPY* chain is not retained in the translocation channel but reaches its ER lumenal side completely. Our data indicate that the Sec61 channel provides the essential pore for protein transport through the ER membrane in either direction; persistent contact with the translocon after import seems not to be required for retrograde transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号