首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The objective of this study was to investigate the effect of selenium (Se) supply (0, control; 2.5, 5, 10, or 20 μM) on cucumber (Cucumis sativus L.) cv. Polan F1 plants grown under short-term low temperature stress. About 14–16 day-old seedlings, grown at an optimal temperature (25/20°C; day/night), were exposed to short-term chilling stress with a day/night temperature of 10°C/5°C for 24 h, for a further 24 h at 20°C/15°C, and then transferred to 25/20°C (re-warming) for 7 days. Se did not affect the fresh weight (FW) of plants at a concentration of 2.5–10 μM, but in the presence of 20 μM Se, the biomass of shoots significantly decreased. The contents of chlorophylls and carotenoids witnessed no significant change after Se supplementation. Compared with the control, the Se-treated plants showed an increase of proline content in leaves, once after chilling and again after 7 days of re-warming. However, proline levels were much higher immediately after chilling than after re-warming. The malondialdehyde (MDA) content in the root of plants treated with 2.5–10 μM Se decreased directly after stress. This was in comparison with the plants grown without Se, whereas it increased in roots and leaves of plants exposed to 20 μM Se. Seven days later, the MDA level in the root of plants grown in the presence of Se was still lower than those of plants not treated with Se and generally witnessed no significant change in leaves. Although Se at concentrations of 2.5–10 μM modified the physiological response of cucumber to short-term chilling stress, causing an increase in proline content in leaves and diminishing lipid peroxidation in roots, the resistance of plants to low temperature was not clearly enhanced, as concluded on the basis of FW and photosynthetic pigments accumulation.  相似文献   

2.
We studied stomatal conductance (gs) in leaves of cucumber plants (Cucumis sativus L., cv. Zozulya) subjected at early developmental stages to either short-term daily cooling (2 h at the end of night periods) or continuous chilling (12°C throughout the day and night). Irrespective of the irradiance during measurements, continuous chilling either lowered gs or had no effect, as compared to gs of control plants (23°C). In plants subjected to periodic short-term cooling, the gs was found to increase at low temperatures both at moderate and high irradiance; it also increased at high temperature (33°C) but only at photosynthetically active irradiance of 800 ??mol/(m2 s). It is supposed that heat-loving plants, subjected to different types of low-temperature treatment, mobilize different mechanisms of stomatal regulation and employ different strategies of adaptation in response to low- and high-temperature treatments. The unusual behavior of stomata, manifested in stomatal opening at both low and high temperatures, extends the adaptive potential of plants subjected daily to short-term low-temperature treatments. This leads to a high level of photosynthesis, biomass accumulation, and supports high physiological activity in plants.  相似文献   

3.
The mechanisms of plant responses to short-term cold treatments applied daily in the period of active growth remain unknown. Cucumber (Cucumis sativus L.) plants were subjected to brief drops of temperature (2 h, 12°C) at the end of each night over a 6-day period (DROP treatment) and to prolonged (6 days) cooling at 12°C (permanent low-temperature treatment, PLT). The plants exposed to cold treatments and control plants grown at 20°C were compared in terms of cold resistance and changes in gene expression. Cold resistance of plants was determined on the basis of LT50 temperature. The response of cucumber genetic machinery was assessed by means of a differential display method based on polymerase chain reaction (PCR). The changes in mRNA pool in cells of cucumber plants subjected to permanent and periodic chilling were assessed after comparing the populations of PCR fragments of cDNA. In both types of chilling protocols, the cold resistance started to increase from the 2nd day of low temperature treatment. At the end of the experiment (on the 6th day), the increment in cold resistance was three times larger for DROP compared to PLT treatment. Analysis of mRNA pool showed that the numbers of amplified fragments were nearly identical in both types of low-temperature treatment. The higher level of cold resistance under DROP conditions was assumed to depend on features of metabolism.  相似文献   

4.
Ginseng (Panax ginseng) is one of the most medically important plants in the world. Dammarane-type ginsenosides, which mainly include protopanaxatriol-type (PPT-type) and protopanaxadiol-type (PPD-type) ginsenosides, are the major pharmacologically relevant compounds that are produced by ginseng. Dammarenediol-II synthase (DDS) is the first committed enzyme in the ginsenoside biosynthetic pathway for dammarane-type ginsenosides, and PPD-type and PPT-type ginsenosides are catalyzed by protopanaxadiol synthase (PPDS) and protopanaxatriol synthase (PPTS), respectively. Ginseng cells are often used in stress studies. During their growth and development, ginseng plants are often exposed to cold stress. This study evaluated the effects of different chilling stresses on the accumulation of ginsenosides and the expressions of the DDS, PPDS and PPTS genes in ginseng cells. The results showed that continuous chilling (5 °C for 12 h) induced the PPT-type ginsenosides; whereas intermittent chilling (25 °C for 12 h and 5 °C for 12 h) stimulated the accumulation of PPD-type ginsenosides. The expression levels of DDS, PPDS and PPTS were clearly consistent with the accumulation pattern for PPT-type ginsenosides under continuous chilling stress or PPD-type ginsenosides under intermittent chilling stress, as was their order of involvement in the PPT-type or PPD-type biosynthetic pathway. These results indicate that different chilling treatments stimulated the accumulation of different types of ginsenosides, suggesting that cold stress may be one of the reasons for ginsenoside accumulation in ginseng cells.  相似文献   

5.
The role of phytochrome B in the organogenesis process in the apical and axillary shoot meristems during early ontogenesis stages in cucumber Cucumis sativus L. at photoperiods (day/night) 10/14, 16/8 h, and continuous light in comparison with wild type plants and phytochrome B-deficient mutant (lh-mutant) was investigated. In mutant phytochrome B, deficiency caused inhibition of initiation of leaves both in the main shoot and lateral shoots and increased the number of flower buds (IV stage of organogenesis). With continuous light, the number of lateral shoots and flowers during stage IV of organogenesis in wild-type plants increased twofold in comparison with the mutant. Short-term temperature drops did not induce floral ontogenesis in mutants but increased the number of off-shoots in both experimental variants during a long photoperiod and continuous lighting. We propose that phytochrome B, by increasing the compactness of chromatin, may facilitate coordination of ontogenesis processes with changing environmental conditions.  相似文献   

6.
Four species of flowering plants comprising Arctic populations of Cerastium alpinum and Poa arctica var. vivipara and indigenous Antarctic species Colobanthus quitensis and Deschampsia antarctica were investigated. Plants derived from natural origins were grown in an experimental greenhouse in Poland (53°47′N and 20°30′E latitude). Plants for experiment were collected during spring of 2010. Soluble carbohydrates in the intact shoots of C. alpinum and C. quitensis, polar plants of the family Caryophyllaceae, and D. antarctica and P. arctica var. vivipara, representatives of the family Poaceae, were analyzed by gas chromatography, and their involvement in the plants’ response to chilling stress was examined. Plant tissues of the examined families growing in a greenhouse conditions (18–20 °C, short day 10/14 h light/darkness) differed in the content and composition of soluble carbohydrates. In addition to common monosaccharides, myo-inositol and sucrose, Caryophyllaceae plants contained raffinose family oligosaccharides (RFOs), d-pinitol and mono-galactosyl pinitols. RFOs and d-pinitol were not detected in plants of the family Poaceae which contain 1-kestose, a specific tri-saccharide. The accumulation of significant quantities of sucrose in all investigated plants, RFOs in Caryophyllaceae plants and 1-kestose in Poaceae plants in response to chilling stress (4 °C for 48 h with a long day photoperiod, 20/4 h) indicates that those compounds participate in the stress response. The common sugar accumulating in cold stress response and probably most important for chilling tolerance of four investigated plants species seems to be sucrose. On the other hand, the accumulation of above-mentioned carbohydrates during chilling stress can be a return to sugars metabolism, occurring in natural environmental conditions. No changes in d-pinitol concentrations were observed in the tissues of C. alpinum and C. quitensis plants subjected to both low and elevated temperatures, which probably rules out the protective effects of d-pinitol in response to cold stress.  相似文献   

7.
Abstract.
  • 1 In Drosophila melanogaster, the cold-shock tolerance of adult flies at -7°C increased 22% after a prior 2h exposure to 4°C as measured by LD50, the dose (degree minutes of exposure to subzero temperature) which resulted in 50% mortality.
  • 2 Cold-shock tolerance was further significantly increased by selecting cold resistant lines by exposure of adults (1) to 4°C for 2 h (short-term chilling), or (2) to -7°C for 80–120 min (cold shock), or (3) to short-term chilling followed by cold-shock.
  • 3 After ten generations of selection, the greatest increase in cold-shock tolerance was found in flies selected using the combined exposure of short-term chilling and cold shock. LD50s increased 33% in comparison with the unselected control strain when no chilling pre-treatment was given prior to cold shock at -7°C.
  • 4 The rapid cold-hardening response increased 82% in the line selected by the short-term chilling and cold-shock regime.
  • 5 The enhanced cold-shock tolerance was relatively stable since no decrease was observed after four generations without selection.
  • 6 This report shows the role of short-term adaptation as well as selection in the capacity to survive low temperatures in non-diapausing stages of insects.
  相似文献   

8.
9.
Low non-freezing temperature is one of the major environmental factors that affect metabolism, growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas, a chilling-sensitive plant, which is considered as a sustainable energy plant with great potential for biodiesel production. Our previous studies showed that short-term chilling shock at 5 °C for 4 h and long-term chill hardening at 12 °C 1 or 2 days could improve chilling tolerance of J. curcas seedlings, but lipidomic response to chilling shock and chill hardening has not been elucidated. In this study, membrane lipid composition change in J. curcas seedlings during chilling shock and chill hardening was investigated by liquid chromatography-electrospray ionization-mass spectrometry (LC–ESI–MS) approach. The results indicated that the relative abundances of nine classes and 72 species of membrane lipids, such as phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC) and lysophosphatidylglycerol (lysoPG), two glycolipids digalactosyldiacylglycerol (DGDG) and monogalactosyldiacylglycerol (MGDG) and a sulfoquinovosyldiacylglycerol (SQDG), were significantly changed, and the degree of unsaturation of above-mentioned cellular membrane lipids with fatty acid differing in chain lengths and the number of double bonds also increased in varying degrees during chilling shock and chill hardening. These results suggested that remodeling and increase in the degree of unsaturation of membranes lipids may be a common physiological basis for short-term chilling shock- and long-term chill hardening-induced chilling tolerance of J. curcas seedlings.  相似文献   

10.
Proline metabolism is implicated in plant responses to abiotic stresses, including the chilling stress. During proline catabolism, the two-step oxidation of proline is performed by the continuous actions of proline dehydrogenase (ProDH), which produces Δ1-pyrroline-5-carboxylate (P5C), and P5C dehydrogenase (P5CDH), which oxidizes P5C to glutamate. The Arabidopsis thaliana chilling mutants chs1 and chs2 are sensitive to chilling temperatures of 13–18°C. For a better understanding of Arabidopsis responses to chilling stress, 4-week-old wild-type (WT) and chs1 and chs2 lines, with three plants in each group, were subjected to chilling stress (13°C), cold stress (4°C), or remained under normal conditions (23°C); and several factors including the expression of ProDH2 and P5CDH genes, POX (peroxidase) and SOD (superoxide dismutase) activities, as well as MDA and proline contents were examined. Our results showed an increase in the proline content in all lines under chilling conditions. In addition, a greater expression of ProDH2 and a lower expression of P5CDH were observed, leading us to speculate a greater breakdown of proline into P5C and a consequent overproduction of ROS in the ETC cycle. The higher POX and SOD activities and a higher MDA content in chs mutants at 13°C are in line with this speculation. Finally, cold-treated plants (4°C) only showed an increase in proline levels.  相似文献   

11.
The chilling tolerance of cucumber seedling radicles was influenced by their relative levels of vigour. Radicles of high‐vigour seedlings grew to 20 mm in length in 36 h at 25 °C, whereas it took 60 h for low‐vigour seedling radicles to reach that length. Chilling at 2·5 °C for 48 h inhibited the subsequent growth of high‐ and low‐vigour seedlings by 39 and 68%, respectively. The 2,3,5‐triphenyltetrazolium chloride (TTC) viability index, and α,α‐diphenyl‐β‐picrylhydrazyl (DPPH)‐radical scavenging activity were higher in high than low‐vigour radicles. Higher ascorbate peroxidase (APX) and catalase (CAT) enzyme activity, DPPH‐radical scavenging activity, and recovery of CAT activity after chilling in high‐vigour radicles corresponded with their higher level of chilling tolerance in comparison with low‐vigour radicles. In contrast, elevated levels of superoxide dismutase, glutathione reductase and guaiacol peroxidase appear to be correlated with chilling injury since they only showed substantial increases in activity in the more chilling‐­sensitive low‐vigour radicles after chilling. Manipulation of APX, CAT, and/or DPPH activity could produce plants with superior and persistent chilling tolerance.  相似文献   

12.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

13.
Abstract. Diapause adults of Plautia stali Scott maintained at 20°C under short day conditions (LD 12:12 h) were exposed to four temperatures of 5–20°C to examine the effect on diapause development which was assessed in terms of oviposition. Diapause adults kept at 20°C under short day conditions changed their body colour gradually from brown to green and started egg laying after a prolonged preoviposition period. Those transferred to either 10 or 15°C also showed colour change but did not lay eggs. Bugs exposed to 5°C underwent neither body colour change nor oviposition and died more rapidly than those kept at higher temperatures. When 30-day-old diapause adults were chilled at 5, 10 or 15°C for 30 or 60 days and returned to 20°C and long day conditions (LD 16:8 h), the preoviposition period varied primarily depending on the chilling, but not on the temperature. On the other hand, when 60day-old diapause adults chilled for 30 days were observed at 20°C and long day conditions, their preoviposition period tended to be longer as the chilling temperature was lower In this case, a temperature of 10°C appeared to intensify diapause. Therefore, the effect of chilling on diapause development varied depending on the age at which insects were chilled. When chilled bugs were transferred to short day conditions at 20°C, most females failed to lay any eggs and some turned green, then after a while, some green bugs changed to brown again. These results indicate that bugs remained sensitive to short day conditions even after a 60-day chilling at 10 or 15°C.  相似文献   

14.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

15.
Bean, cucumber and corn plants were grown in controlled-environment chambers at 25/18 °C day/night temperature and either ambient (350 μmol mol?1) or elevated (700 μmol mol?1) CO2 concentration, and at 20–30 d after emergence they were exposed to a 24 h chilling treatment (6.5 ± 1.5 °C) at their growth CO2 concentration. Whole-plant transpiration rates (per unit leaf area basis) during the first 3 h of chilling were about 26,28 and 13% lower at elevated than at ambient CO2 for bean, cucumber and corn, respectively. The decline in leaf water potential (ψL) and visible wilting of bean and cucumber during chilling were significantly less at elevated than at ambient CO2. Corn ψL was not significantly affected by chilling, and corn did not exhibit any other symptoms of chilling-induced water stress. Leaf osmotic potentials (measured before chilling only) of bean and cucumber were more negative at elevated than at ambient CO2, and the corresponding calculated leaf turgor potentials were significantly higher at elevated than at ambient CO2. Leaf relative water content (RWC) during chilling at ambient CO2fell to 62 and 48% for bean and cucumber, respectively. RWC during chilling at elevated CO2 was never below 79% for bean or 63% for cucumber. Corn RWC was not measured. After 24 h of chilling at ambient CO2, net photosynthetic rate (PN) reductions were 83, 89 and 24% for bean, cucumber and corn, respectively. PN reductions during chilling were less at elevated CO2: 53, 40 and 4% for bean, cucumber and corn, respectively. At ambient CO2, none of the species fully recovered to pre-chilling PN, but at elevated CO2 both bean and corn recovered fully. The average percentage leaf area with visible leaf damage due to chilling was 20.6 and 9.6% at ambient and elevated CO2, respectively, for bean, and 32.4 and 23.6% at ambient and elevated CO2, respectively, for cucumber. Corn showed no significant permanent leaf damage from chilling at either CO2 concentration. These results indicate that cucumber was most sensitive to chilling as imposed in this study, followed by bean and corn. The results support the hypothesis that, at least in young plants under controlled-environment conditions, elevated CO2 improves plant water relations during chilling and can mitigate photosynthetic depression and chilling damage. The implications for long-term growth and reproductive success in managed and natural ecosystems will require testing of this hypothesis under field conditions.  相似文献   

16.
Pre-treating paclobutrazol enhanced chilling tolerance of sweetpotato   总被引:2,自引:0,他引:2  
The objective of this work was to study changes in low molecular weight antioxidants and antioxidative enzymes in chilling-stressed sweetpotato, as affected by paclobutrazol (PBZ) pre-treatment 24 h prior to exposure to chilling conditions. Sweetpotato ‘TN71’ and ‘TN65’ were treated with 300 mg PBZ/5 ml/plant, after which plants were subjected to 7°C/7°C (day/night) for periods of 1, 3 and 5 days, followed by a 3-day recovery period at 24°C/20°C (day/night). A factorial experiment in completely randomized design with four replications was used in this study. Young fully expanded leaves at each temperature and period of time were clipped for antioxidative system measurement. We concluded that different varieties displayed variations in their oxidative system, and the differential expressions of each genotype were associated with chilling stress response. Plants with various antioxidative systems responded differently to chilling stress according to the duration of the chilling period and subsequent re-warming period. ASA, GSH and GSSG contents were enhanced in TN71 prior to chilling stress. Increased APX, GR, ASA and MDA activities accounted for chilling tolerance in TN65. Furthermore, our results indicate that the elevated levels of the antioxidative system observed after PBZ pre-treatments afforded the sweetpotato leaf improved chilling-stress tolerance. The levels of ASA and GSSG of both TN71 and TN65 under chilling were significantly raised by pre-treating with PBZ. PBZ pre-treatment exhibited the important function of enhancing the restoration of leaf oxidative damage under chilling stress and increasing the chilling tolerance of plants to mitigate chilling stress effects.  相似文献   

17.
The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.  相似文献   

18.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12h at 35°C showed rhythmic daily changes in chilling resistance. Chilling treatment (5°C, 48h) started at the beginning or middle of the daily light period resulted in a substantial growth inhibition of the seedlings upon return to 35°C whereas when chilling was started at the beginning or middle of the dark period the subsequent growth of the seedlings was much less inhibited. This rhythm in chilling resistance persisted under continuous light for three 24-h periods, indicating that it is of an endogenous nature. Seedlings grown under continuous light from germination showed no daily changes in resistance, but a rhythm was initiated by introduction of a dark period of 6h or longer. In 24-h cycles with different light and dark periods, maximal resistance was reached just before the start of dark period. Seedlings grown at 35°C could be acclimated to chilling by exposure to low, non-damaging temperatures (25–15°C). A short-term (6h) exposure to 25°C started at the resistant phase resulted in a large increase in resistance during the following otherwise sensitive phase. The resistance induced by the low temperature matched or slightly exceeded the maximal resistance reached during the resistant phase of the daily rhythm of chilling. The low-temperature-induced resistance and the daily rhythmic increase in resistance were not additive, indicating a common mechanism for the two kinds of resistances. An adaptive advantage of a combination of a rapid temperature-induced acclimation and the daily rhythmic increase in resistance is suggested.  相似文献   

19.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   

20.
The effects of root chilling (2 °C; during 1, 5 h, 1, 2, 4 and 7 days) on the ultrastructure, functional activity of chloroplasts and cold tolerance of leaf cells of wheat (Triticum aestivum L.) were studied. Results indicated that the area of the chloroplasts increased and the number of grana in the chloroplast decreased already within first hours of the experiment. On the 2nd–7th day of the cold treatment, the length of photosynthetic membranes in the chloroplasts increased owing to the membranes of thylakoids in grana. The number of chloroplasts per cell was increased by the end of the experiment. Reduction of electron transport rate and intensification of non-photochemical quenching of chlorophyll fluorescence were observed in the first hours of root chilling. The growth of the leaves slowed in the first day of the treatment and resumed on the second day. Leaf area in the root-chilled plants by the end of the experiment exceeded the initial values by 60 %. The significant rise in cold tolerance of leaf cells was detected after 24 h of root chilling. After 48 h of the treatment, the cold tolerance reached a maximum, and did not change thereafter. It is assumed that most of the observed structural and functional changes are adaptive, and meant to support the photosynthetic function and promote the cold tolerance of the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号