共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the possibility of enhancing cold stress tolerance of soybean plants (Glycine max L.) by exogenous application of 5-aminolevulinic acid (ALA) was investigated. ALA was added to the Hoagland solution at various concentrations ranging from 0 to 40 μM for 12 h. After ALA treatment, the plants were subjected to cold stress at 4°C for 48 h. ALA at low concentrations (5-10 μM) provided significant protection against cold stress compared to non-ALA-treated plants, enhancing chlorophyll content (Chl) as well as relative water content (RWC). Increase of thiobarbituric acid reactive species (TBARS) levels was also prevented, whereas exposure to higher ALA concentrations (15-40 μM) brought about a dose dependent increase of these species, reaching a maximum of 117% in plants pre-treated with 40 μM ALA compared to controls. ALA pre-treatment also enhanced catalase (CAT) and heme oxygenase-1 (HO-1) activities. These findings indicate that HO-1 acts not only as the rate limiting enzyme in heme catabolism, but also as an antioxidant enzyme. The highest cold tolerance was obtained with 5 μM ALA pre-treatment. Results show that ALA, which is considered as an endogenous plant growth regulator, could be used effectively to protect soybean plants from the damaging effects of cold stress by enhancing the activity of heme proteins, e.g., catalase (CAT) and by promoting heme catabolism leading to the production of the highly antioxidant biliverdin and carbon monoxide, without any adverse effect on the plant growth. 相似文献
2.
Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress 下载免费PDF全文
Christelle Dutilleul Heidy Chavarria Nathalie Rézé Bruno Sotta Emmanuel Baudouin Isabelle Guillas 《Plant, cell & environment》2015,38(12):2688-2697
Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long‐chain base intermediates. The formation and function of ceramide phosphates (Cer‐Ps) in chilled Arabidopsis were explored. Cer‐Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold‐stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer‐P occurs in cold‐stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer‐P formation is independent of long‐chain base phosphate (LCB‐P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA‐dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer‐P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. 相似文献
3.
Nisreen A. AL-Quraan Robert D. Locy Narendra K. Singh 《Plant Physiology and Biochemistry》2010,48(8):697-702
Calmodulin (CaM), a calcium-regulated protein, regulates the activity of a number of key enzymes and plays important roles in cellular responses to environmental changes. The Arabidopsis thaliana genome contains nine calmodulin (CAM) genes. To understand the role of specific CAM genes in heat stress, the steady-state level of mRNA for the nine CAM genes in root and shoot tissues of seedlings grown at normal growth temperature (25 °C) and during heat stress at 42 °C for 2 h was compared in T-DNA insertional mutant lines of 7 CAM genes and the wild type using gene specific primers and RT-PCR. Compared to growth at 25 °C, the mRNA levels of all CAM genes were up-regulated in both root and shoot after heat treatment with the notable exception of CAM5 in root and shoot, and CAM1 in shoot where the mRNA levels were reduced. At 25 °C all cam mutants showed varying levels of mRNA for corresponding CAM genes with the highest levels of CAM5 gene mRNA being found in cam5-1 and cam5-3. CAM5 gene mRNA was not observed in the cam5-4 allele which harbors a T-DNA insertion in exon II. The level of respective CAM gene mRNAs were reduced in all cam alleles compared to levels in wild type except for increased expression of CAM5 in roots and shoots of cam5-1 and cam5-3. Compared to wild type, the level of mRNA for all CAM genes varied in each cam mutant, but not in a systematic way. In general, any non-exonic T-DNA insertion produced a decrease in the mRNA levels of the CAM2 and CAM3 genes, and the levels of CAM gene mRNAs were the same as wild type or lower in the cam1, cam4, cam5-2, and cam6-1 non-exonic mutant alleles. However, the level of mRNA for all genes except CAM2 and CAM3 genes was up-regulated in all cam2 and cam3 alleles and in the cam5-1 and cam5-3 alleles. During heat stress at 42 °C the level of CAM gene mRNAs were also variable between insertional mutants, but the level of CAM1 and CAM5 gene mRNAs were consistently greater in response to heat stress in both root and shoot. These results suggest differential tissue-specific expression of CAM genes in root and shoot tissues, and specific regulation of CAM gene mRNA levels by heat. Each of the CAM genes appears to contain noncoding regions that play regulatory roles resulting in interaction between CAM genes leading to changes in specific CAM gene mRNA levels in Arabidopsis. Only exonic insertion in CAM5 gene resulted in a loss-of-function of CAM5 gene among the mutants we surveyed in this study. 相似文献
4.
In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 degrees C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana. 相似文献
5.
Teige M Scheikl E Eulgem T Dóczi R Ichimura K Shinozaki K Dangl JL Hirt H 《Molecular cell》2004,15(1):141-152
6.
Q. Zhang L. -J. Su J. -W. Chen X. -Q. Zeng B. -Y. Sun C. -L. Peng 《Biologia Plantarum》2012,56(1):97-104
To uncover the potential antioxidative role of anthocyanins in vivo in protecting photosynthetic tissues from photoinhibition, the effects of high irradiance [HI, 1300 μmol(photon) m−2 s−1] were studied using detached leaves derived from Arabidopsis wild-type (WT) and the mutant deficient in anthocyanin biosynthesis (tt3tt4). HI stress caused decreased chlorophyll content and photochemical efficiency, but increased cell-membrane leakage and contents
of hydrogen peroxide and superoxide radical in the leaves of both Arabidopsis phenotypes, but the WT plants showed better HI tolerance than tt3tt4 mutant. HI caused a significant increase in the 1,1-diphenyl-2-picrylhydrazyl scavenging capacity in WT but not in the tt3tt4 mutant. The anthocyanins could not contribute substantially to light-shielding during the periods of HI stress, because the
anthocyanin content in WT was very low and the colour of leaves was the same as in the tt3tt4 mutant. Thus, it was assumed that the better HI tolerance in WT was mostly related to the potential antioxidative role of
anthocyanins. 相似文献
7.
CARLOTTA PETERS SANG‐CHUL KIM SHIVAKUMAR DEVAIAH MAOYIN LI XUEMIN WANG 《Plant, cell & environment》2014,37(9):2002-2013
Developing a robust root system is crucial to plant survival and competition for soil resources. Here we report that the non‐specific phospholipase C5 (NPC5) and its derived lipid mediator diacylglycerol (DAG) mediate lateral root (LR) development during salt stress in Arabidopsis thaliana. T‐DNA knockout mutant npc5‐1 produced few to no LR under mild NaCl stress, whereas overexpression of NPC5 increased LR number. Roots of npc5‐1 contained a lower level of DAG than wild type, whereas NPC5 overexpressor exhibited an increase in DAG level. Application of DAG, but not phosphatidic acid, fully restored LR growth of npc5‐1 to that of wild type under NaCl stress. NPC5 expression was significantly induced in Arabidopsis seedlings treated with NaCl. Npc5‐1 was less responsive to auxin‐mediated root growth than the wild type. These results indicate that NPC5 mediates LR development in response to salt stress and suggest that DAG functions as a lipid mediator in the stress signalling. 相似文献
8.
Kocourková D Krcková Z Pejchar P Veselková S Valentová O Wimalasekera R Scherer GF Martinec J 《Journal of experimental botany》2011,62(11):3753-3763
Phosphatidylcholine-hydrolysing phospholipase C, also known as non-specific phospholipase C (NPC), is a new member of the plant phospholipase family that reacts to environmental stresses such as phosphate deficiency and aluminium toxicity, and has a role in root development and brassinolide signalling. Expression of NPC4, one of the six NPC genes in Arabidopsis, was highly induced by NaCl. Maximum expression was observed from 3?h to 6?h after the salt treatment and was dependent on salt concentration. Results of histochemical analysis of P(NPC4):GUS plants showed the localization of salt-induced expression in root tips. On the biochemical level, increased NPC enzyme activity, indicated by accumulation of diacylglycerol, was observed as early as after 30?min of salt treatment of Arabidopsis seedlings. Phenotype analysis of NPC4 knockout plants showed increased sensitivity to salinity as compared with wild-type plants. Under salt stress npc4 plants had shorter roots, lower fresh weight, and reduced seed germination. Expression levels of abscisic acid-related genes ABI1, ABI2, RAB18, PP2CA, and SOT12 were substantially reduced in salt-treated npc4 plants. These observations demonstrate a role for NPC4 in the response of Arabidopsis to salt stress. 相似文献
9.
Plant response to stress has been linked to different RNA-silencing processes and epigenetic mechanisms. Our recent results
showed that Arabidopsis thaliana Dicer-like (DCL) mutants were impaired in transgenerational changes, recombination frequency and stress tolerance. We also
found that transgenerational changes were dependent on changes in DNA methylation. Here, we hypothesized that plants deficient
in the production of small RNAs would show an impaired abiotic stress response. To test this, we exposed A. thaliana dcl2, dcl3, dcl4, dcl2
dcl3 (d2d3), dcl2 dcl4 (d2d4), dcl2 dcl3 dcl4 (d2d3d4), nrpd1a, rdr2 and rdr6 mutants to methyl methane sulfonate (MMS). We found dcl4 and rdr6 to be more sensitive and dcl2, dcl3, d2d3 and rdr2 plants more resistant to MMS, as shown by fresh weight, root length and survival rate. The in vitro repair assay showed the
lower ability of dcl2 and dcl3 to repair UV-damaged DNA. To summarize, we found that whereas mutants impaired in transactivating siRNA biogenesis were more
sensitive to MMS, mutants impaired in natural antisense siRNA and heterochromatic siRNA biogeneses were more tolerant. Our
data suggest that plant response to MMS is in part regulated through biogenesis of various siRNAs. 相似文献
10.
Jasmonates are naturally occurring signal compounds that regulate plant growth and development, and are involved in plant responses to several environmental stress factors. The mode of action of jasmonates has been investigated traditionally by analysis of the effects of exogenous application of these compounds, including identification of jasmonate-responsive genes and determination of their expression and responsive promoter elements. In addition, jasmonate biosynthesis has been studied by identification of biosynthetic enzymes, use of inhibitors and determination of endogenous jasmonate levels. Recently, several mutants defective in jasmonate biosynthesis and signaling have been isolated and their phenotypes shed new light on the role of jasmonates and jasmonate signaling in plant responses to pathogens, insects and ozone. 相似文献
11.
Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology 总被引:2,自引:0,他引:2
A proteome study based on 2-D gel electrophoresis was performed in order to analyse the cold-stress response of Arabidopsis plants. The emphasis was to monitor the overall changes in the protein complement after prolonged exposure rather than short-term responses. Two different temperature regimes were used (6 degrees C and 10 degrees C) and plants were exposed to cold-stress exposure for 1 week. Protein patterns were also monitored after re-shifting plants to control conditions for a further week. To monitor gradual changes in the response to the two cold-stress conditions, the analysis was performed with DIGE technology with the inclusion of an internal standard. In the experiments using 6 degrees C, 22 spots with at least 2-fold altered expression were found; among them 18 were increased and four were decreased. When plants were exposed to 10 degrees C, 18 of these 22 spots still showed a 2-fold change; however, the alterations were, in general, more moderate than observed under 6 degrees C. Spot identification was performed by MALDI-TOF and ESI-MS/MS. Many of the proteins identified have previously been described in the context of cold-stress responses, indicating the validity of this proteome approach for further in-depth studies. 相似文献
12.
Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress 总被引:3,自引:0,他引:3 下载免费PDF全文
Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL. 相似文献
13.
Arabidopsis mutants with reduced response to NaCl and osmotic stress 总被引:11,自引:0,他引:11
We isolated 6 mutant lines of Arabidopsis thaliana that expressed reduced sensitivity to salt and osmotic stress during germination. All 6 lines cum recessive mutations in a single gene, designated reduced salt sensitivity (rss), linked to the ADH marker on chromosome 1. The rss mutants are less sensitive than wild type for NaCl and osmotic stress inhibition of germination, tolerating approximately 150 mM higher concentrations of NaCl and about 250 mM higher concentrations of sorbitol in the media. Germination assays on media containing various salts indicate that the rss mutations reduce sensitivity lo Na+ and Rh+ but also, to a much lesser degree, to K+ and Css+ . However, the rss mutation does not improve plant growth when plantlets are transferred to high salt or high osmotic pressure media after germination. The rss plantlets accumulate praline to a significantly lesser degree than wild type when they are exposed to either salt or osmotic stress. Thus, the rss mutants differ from wild type both at germination and during vegetative growth indicating that the rss mutations are pleiotropic and might affect perception of solutes or some aspect of stress-induced signaling. The rss mutations do not alter ABA sensitivity and therefore probably do not affect ABA-mediated signaling. 相似文献
14.
15.
16.
17.
18.
Effects of moderate cold stress on reasoning ability, associative learning and critical flicker frequncy of Indian subjects were studied by exposing them to 25C,. 20C, 15C and 10C for three hours. A second set of experiments was also conducted to confirm the conclusions of the first by using the same temperatures and duration of exposure. However, not only the sample used in the second case was larger and different but also the mental functions tested were numerical ability, running memory and mental alertness. It has been concluded that there is a significant impairment of simple cognitive functions at 15C which is 10C lower than their most comfortable temperature of 25C. 相似文献
19.
20.
Plants contain an extensive family of PsbP-related proteins termed PsbP-like (PPL) and PsbP domain (PPD) proteins, which are localized to the thylakoid lumen. The founding member of this family, PsbP, is an established component of the Photosystem II (PS II) enzyme, and the PPL proteins have also been functionally linked to other photosynthetic processes. However, the functions of the remaining seven PPD proteins are unknown. To elucidate the function of the PPD5 protein (At5g11450) in Arabidopsis, we have characterized a mutant T-DNA insertion line (SALK_061118) as well as several RNAi lines designed to suppress the expression of this gene. The functions of the photosynthetic electron transfer reactions are largely unaltered in the ppd5 mutants, except for a modest though significant decrease in NADPH dehydrogenase (NDH) activity. Interestingly, these mutants show striking plant developmental and morphological defects. Relative to the wild-type Col-0 plants, the ppd5 mutants exhibit both increased lateral root branching and defects associated with axillary bud formation. These defects include the formation of additional rosettes originating from axils at the base of the plant as well as aerial rosettes formed at the axils of the first few nodes of the shoot. The root-branching phenotype is chemically complemented by treatment with the synthetic strigolactone, GR24. We propose that the developmental defects observed in the ppd5 mutants are related to a deficiency in strigolactone biosynthesis. 相似文献