首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological function in brain of glycogen and the enzyme catalyzing the rate-limiting step in glycogenolysis, glycogen phosphorylase (EC 2.4.1.1), is unknown. As a first step toward elucidating such a function, we have purified bovine brain glycogen phosphorylase isozyme BB 1,700-fold to a specific activity of 24 units/mg protein. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent silver staining, a single major protein band corresponding to an apparent molecular mass of 97 kDa was observed. Mouse monoclonal antibodies raised against the enzyme were purified and shown to be monospecific as indicated by immunoblotting. Immunocytochemical examination of astroglia-rich primary cultures of rat brain cells revealed a colocalization of glycogen phosphorylase with the astroglial marker glial fibrillary acidic protein in many cells. The staining for the enzyme appeared at two levels of intensity. There were other cells in the culture showing no specific staining under the experimental conditions employed. Neurons in neuron-rich primary cultures did not show positive staining. The data suggest that glycogen phosphorylase may be predominantly an astroglial enzyme and that astroglia cells play an important role in the energy metabolism of the brain.  相似文献   

2.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   

3.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

4.
Glucose-grown cells of Streptococcus salivarius have been shown to contain a polyglucose phosphorylase which had maximum activity in the stationary phase of growth. Despite the fact that activity in crude cell-free extracts was two- to threefold greater in the presence of corn dextrin than with oyster glycogen, subsequent purification (200-fold) of the enzyme from the soluble fraction of the organism by protamine sulfate treatment, ammonium sulfate fractionation (30–50%), ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-200 demonstrated that this dextrin/glycogen activity was associated with a single enzyme. Since glucose-grown cells of S. salivarius are known to synthesize a typical glycogen polymer, the enzyme was named: glycogen phosphorylase. The purified enzyme preparation was devoid of phosphoglucomutase and ADP-glucose pyrophosphorylase, but contained a small amount of ADP-glucose: α-1,4 glucan transferase activity. The enzyme was stable at ?10 °C in the presence of 0.2 m NaF, while the pH optimum for the enzyme was 6.0 both with glycogen and with dextrin. With the purified enzyme, corn dextrin was the best primer, both in the direction of synthesis and in the direction of phosphorolysis, being 1.8–1.9 times more effective than purified S. salivarius glycogen. When the enzyme was assayed in the direction of glycogen synthesis, a Km value of 3.4 mm was obtained for glucose-1-P, while the values for S. salivarius glycogen, oyster glycogen and corn dextrin were 25, 42, and 40 mg/ml, respectively. In the direction of phosphorolysis, Km values were 20 mm for Pi obtained with oyster glycogen, 25 mm for Pi with corn dextrin, and 20 mg/ml and 26 mg/ml for oyster glycogen and corn dextrin, respectively. Present data suggests no involvement of -SH groups in enzyme catalysis, while the enzyme was inhibited by divalent ions with the severest inhibition being observed with Ca2+, Zn2+ and Fe2+. The two ion chelators, EDTA and EGTA, had no effect on enzyme activity.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

6.
Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The K(m) values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development.  相似文献   

7.
Glycogenolytic enzymes in sporulating yeast.   总被引:21,自引:11,他引:10       下载免费PDF全文
During meiosis in Saccharomyces cerevisiae, the polysaccharide glycogen is first synthesized and then degraded during the period of spore maturation. We have detected, in sporulating yeast strains, an enzyme activity which is responsible for the glycogen catabolism. The activity was absent in vegetative cells, appeared coincidently with the beginning of glycogenolysis and the appearance of mature ascospores, and increased progressively until spourlation was complete. The specific activity of glycogenolytic enzymes in the intact ascus was about threefold higher than in isolated spores. The glycogenolysis was not due to combinations of phosphorylase plus phosphatase or amylase plus maltase. Nonsporulating cells exhibited litle or no glycogen catabolism and contained only traces of glycogenolytic enzyme, suggesting that the activity is sporulation specific. The partially purified enzyme preparation degraded amylose and glycogen, releasing glucose as the only low-molecular-weight product. Maltotriose was rapidly hydrolyzed; maltose was less susceptible. Alpha-methyl-D-glucoside, isomaltose, and linear alpha-1,6-linked dextran were not attacked. However, the enzyme hydrolyzed alpha-1,6-glucosyl-Schardinger dextrin and increased the beta-amylolysis of beta-amylase-limit dextrin. Thus, the preparation contains alpha-1,4- and alpha-1,6-glucosidase activities. Sephadex G-150 chromatography partially resolved the enzyme into two activities, one of which may be a glucamylase and the other a debranching enzyme.  相似文献   

8.
Mutants of Escherichia coli which are unable to synthesize glycogen were used to study the so-called “unprimed” synthesis of glycogen. The glycogen synthase has been partially purified from these mutants. During the purification, attempts were made to separate the activity which requires the addition of an exogenous primer (primed activity) from the activity which does not require a primer but is highly dependent on the presence of some salts such as citrate and EDTA (unprimed activity). No separation between these two activities could be achieved but the results obtained by chromatography on DEAE-Sephadex indicate that there is a single form of glycogen synthase which is responsible for both unprimed and primed activity. The evidence that a single protein was necessary to catalyze these two reactions was given by the findings that mutants defective in glycogen synthase activity were unable to catalyze glucosyl transfer without added primer. At low concentration, the glycogen synthase purified from a branching enzyme negative mutant catalyzed the unprimed reaction at a slow rate even in presence of salts. A protein activator of this reaction was found in mutants lacking glycogen synthase but not in mutants lacking branching enzyme. The hypothesis that this activator is the branching enzyme itself was supported by the observation that it co-purified with the branching enzyme from a E. coli strain defective in glycogen synthase activity. EDTA or Triton X-100 increased the stimulation of the unprimed synthesis by the branching enzyme. The apparent affinity of the glycogen synthase for glycogen was increased twofold in the presence of EDTA but the branching enzyme further increased the effect of EDTA. The combined action of the glycogen synthase and the branching enzyme on the endogenous glucan associated with the synthase may account for the unprimed activity observed in vitro.  相似文献   

9.
The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells.  相似文献   

10.
Pig skeletal muscle glycogen phosphorylase b was purified using ammonium sulfate fractionation, DEAE-Sephadex A-50 and Sephadex G-200 column chromatography. The purified enzyme was used to immunize rabbits in the presence or in the absence of complete Freund adjuvant. Antibodies against pig phosphorylase in pure form were isolated from rabbit antisera using insoluble immunoadsorbents of pig phosphorylase. Autoantibodies against the rabbit enzyme were obtained from the same antisera using insoluble immunoadsorbents of rabbit phosphorylase. Complete inactivation of pig phosphorylase was accomplished by an antibody/enzyme molar ratio equal to 4 and autoantibody/enzyme molar ratio equal to 130. Complete inactivation of rabbit phosphorylase was accomplished by an antibody/enzyme molar ratio equal to 250 and autoantibody/enzyme molar ratio equal to 160. Passive haemagglutination technique gave positive results with minimum amounts of 0.02 microng/ml and 0.8 microng/ml for pig and rabbit phosphorylase respectively. Kinetic experiments have shown that antibodies and autoantibodies act as noncompetitive inhibitors of both enzymes with respect to AMP and glucose 1-phosphate but exhibit a mixed type of inhibition with respect to glycogen. When glycogen hydrolysates were used as substrate in place of intact glycogen molecules a pronounced decrease in the inhibitory capacity of antienzyme on the enzyme was demonstrated.  相似文献   

11.
Glycogen debranching enzyme was partially purified from bovine brain using a substrate for measuring the amylo-1,6-glucosidase activity. Bovine cerebrum was homogenized, followed by cell-fractionation of the resulting homogenate. The enzyme activity was found mainly in the cytosolic fraction. The enzyme was purified 5,000-fold by ammonium sulfate precipitation, anion-exchange chromatography, gel-filtration, anion-exchange HPLC, and gel-permeation HPLC. The enzyme preparation had no alpha-glucosidase or alpha-amylase activities and degraded phosphorylase limit dextrin of glycogen with phosphorylase. The molecular weight of the enzyme was 190,000 and the optimal pH was 6.0. The brain enzyme differed from glycogen debranching enzyme of liver or muscle in its mode of action on dextrins with an alpha-1,6-glucosyl branch, indicating an amino acid sequence different from those of the latter two enzymes. It is likely that the enzyme is involved in the breakdown of brain glycogen in concert with phosphorylase as in the cases of liver and muscle, but that this proceeds in a somewhat different manner. The enzyme activity decreased in the presence of ATP, suggesting that the degradation of brain glycogen is controlled by the modification of the debranching enzyme activity as well as the phosphorylase.  相似文献   

12.
Glycogen synthase has been purified from the obliquely striated muscle of the swine parasite Ascaris suum. The muscle contains a concentration of glycogen synthase and glycogen which is 20-fold and 15-fold, respectively, greater than rabbit skeletal muscle. The enzyme could not be solubilized with salivary amylase, but partial solubilization was achieved by activation of endogenous phosphorylase. The enzyme was purified to 85-90% homogeneity (specific activity = 4.3 units/mg) by DEAE-cellulose, Sepharose 4B, and glucosamine 6-phosphate chromatography. The purified glycogen synthase was substantially similar to rabbit skeletal muscle enzyme with respect to Mr (gel electrophoresis and gel filtration), pH dependence, aggregation properties, temperature dependence, and kinetic constants for substrates and activators. Glycogen synthase I was converted to glycogen synthase D by the cyclic AMP-dependent protein kinase. The cyclic AMP-dependent protein kinase catalyzed the incorporation of 1.3 mol of phosphate into each glycogen synthase I subunit and the concomitant interconversion to glycogen synthase D. Since glycogen is the sole fuel utilized by this organism during nonfeeding periods of the host, the characterization of this enzyme provides further insight into the regulatory mechanisms which determine glycogen turnover.  相似文献   

13.
Summary Glycogen synthase kinase-3 (GSK-3) was purified from rabbit liver to homogeneity by ultracentrifugation, ion-exchange chromatography on DEAE-cellulose, Cellulose phosphate, CM-Sephadex and Fast Protein Liquid Chromatography (FPLC) on Mono-S column. The enzyme was purified approximately 20,000 fold with an approximate 2% recovery. The purified enzyme showed a single band on SDS-polyacrylamide gel electrophoresis. GSK-3 is a monomeric enzyme with a molecular weight of 50,000–52,000 as derived from SDS-polyacrylamide gel electrophoresis and gel filtration. The purified enzyme was indeed a GSK-3 since it phosphorylated three sites, i.e., 3a, 3b, and 3c on liver glycogen synthase. GSK-3 incorporated up to 2.6 mol Pi/mol glycogen synthase subunit with a concomitant inactivation of glycogen synthase activity.  相似文献   

14.
Amylo-1,6-glucosidase from porcine brain was purified to homogeneity by ammonium sulfate fractionation, followed by sequential steps of liquid chromatography on DEAE-Sephacel, Sephacryl S-300, and Super Q. The purified enzyme had both maltooligosaccharide transferase and amylo-1,6-glucosidase activities within a single polypeptide chain, and the combination of these two activities removed the branches of phosphorylase limit dextrin. Based on these results, the purified enzyme was identified as a glycogen debranching enzyme (GDE). The molecular weight of the brain GDE was 170,000 by gel-filtration and 165,000 by reducing SDS-PAGE. The pH profile of maltooligosaccharide transferase activity coincided with that of the amylo-1,6-glucosidase activity (pH optimum at 6.0). The existence of GDE as well as glycogen phosphorylase in the brain explains brain glycogenolysis fully and supports the hypothesis that glycogen is a significant source of energy in this organ.  相似文献   

15.
The glycogen phosphorylase (EC 2.4.1.1) from the mycelium of Phymatotrichum omnivorum was purified by ammonium sulfate fractionation, gel filtration on Sephacryl S-200, and DEAE-cellulose ion-exchange chromatography to more than 100-fold. The purified enzyme was homogeneous; this was confirmed by polyacrylamide gel electrophoresis. Sodium dodecyl sulfate-gel electrophoresis indicated the relative molecular size of the enzyme was around 145,000. The approximate molecular weight by gel filtration was 116,000. The optimum pH of the enzyme was 7.0 and the enzyme was more specific for glycogen, with a Km value of 0.36 mg/ml. Nucleotides AMP, ADP, and ATP and compounds containing an "SH" group inhibited the enzyme activity. Diethyldithiocarbamate, EDTA, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, and Cu2+ were the potent inhibitors of the glycogen phosphorylase activity, Ca2+, Cu2+, Co2+, and Fe2+ stimulated the enzyme activity. The enzyme preparation was stable at 4 degrees C during a period of 30 days.  相似文献   

16.
Glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransfase, EC 2.4.1.1) activity was found in mycelial extracts of Coprinus macrorhizus concurrently with decrease of glycogen content in mycelial cells. Incubation of the enzyme sample with cyclic AMP and ATP leads to a 3-fold activation of the glucogen phosphorylase activity. Activation of the enzyme partially purified through Sepharose 6B required a cellular fraction containing cyclic AMP-dependent protein kinase.  相似文献   

17.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

18.
The cellular slime mold, Dictyostelium disoideum, provides an ideal model system to study eukaryotic cell differentiation. In D. discoideum, glycogen degradation provides precursors for the synthesis of developmentally regulated structural products. The enzyme responsible for glycogen degradation, glycogen phosphorylase, exists in active and inactive forms. The active, or 'a' form, is independent of 5'adenosine monophosphate (5'AMP) while the inactive, or 'b' form, is 5'AMP-dependent. The activity of the 'b' form predominates early in development, while the activity of the 'a' form peaks in mid-late development; their combined specific activities remain constant at any point. Polyclonal antibodies raised to the purified forms of this enzyme showed low cross-reactivity. The anti-'a' serum reacted with a 104-kDa protein that was associated with phosphorylase 'a' activity; the anti-'b' serum reacted with a 92-kDa protein that was associated with phosphorylase 'b' activity and weakly cross-reacted with the 104-kDa protein. Immunoblots of peptide maps of the purified enzyme forms showed that each antibody was specific for the proteolytic fragments of its respective antigen. We also demonstrated in vitro phosphorylation of the 'b' form by an endogenous protein kinase. Cyclic AMP perturbation of intact cells caused induction of both phosphorylase-'a' activity and the 104-kDa protein. Immunotitration data suggested that the 'a' form accumulates due to de novo protein synthesis, although this result must be interpreted with caution.  相似文献   

19.
The effects of insulin and epinephrine on the phosphorylation of glycogen synthase were investigated using rat hemidiaphragms incubated with [32P]phosphate. Antibodies against rabbit skeletal muscle glycogen synthase were used for the rapid purification of the 32P-labeled enzyme under conditions that prevented changes in its state of phosphorylation. The purified material migrated as a single radioactive species (Mapp = 90,000) when subjected to electrophoresis in sodium dodecyl sulfate. Insulin decreased the [32P]phosphate content of glycogen synthase. This effect occurred rapidly (within 15 min) and was observed with physiological concentrations of insulin (25 microunits/ml). The amount of [32P]phosphate removed from glycogen synthase by either different concentrations of insulin or times of incubation with the hormone was well correlated to the extent to which the enzyme was activated. Epinephrine (10 microM) inactivated glycogen synthase and increased its content of [32P]phosphate by about 50%. Cleavage of the immunoprecipitated enzyme with cyanogen bromide yielded two major 32P-labeled fragments of apparent molecular weights equal to approximately 28,000 and 15,000. The larger fragment (Fragment II) displayed electrophoretic heterogeneity similar to that observed with the corresponding CNBr fragment (CB-2) from purified rabbit skeletal muscle glycogen synthase phosphorylated by different protein kinases. Epinephrine increased [32P]phosphate content of both fragments; however, the increase in the radioactivity of the smaller fragment (Fragment I) was more pronounced. Insulin decreased the amount of [32P] phosphate present in Fragments I and II by about 40%. The results presented provide direct evidence that both insulin and epinephrine control glycogen synthase activity by regulating the phosphate present at multiple sites on the enzyme.  相似文献   

20.
Starch debranching enzyme was purified from mung bean ( Vigna radiata ) cotyledons to investigate its properties and developmental pattern during and following germination. A debranching enzyme was purified up to the step where only a doublet of polypeptides with molecular masses of 99 and 101 kDa, respectively, was detected by SDS-PAGE. The enzyme is thought to be a single chain monomer, as the molecular mass of the enzyme determined by gel filtration was 72 kDa. Monoclonal antibodies raised against the purified preparation recognized the doublet, indicating that the two polypeptides have immunological homology to each other. The enzyme preparation showed a high activity with pullulan as a substrate, low activity with soluble starch and amylopectin, and no activity with glycogen. These substrate specificities indicate that the debranching enzyme from mung bean cotyledons is of the pullulanase type. Immunoblotting profiles revealed that the enzyme is present in dry seeds and decreases gradually after imbibition, suggesting the possibility that the pullulanase plays a role in developing mung bean cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号