首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of potential fluctuations, large and small, recorded intracellularly from photoreceptors in the dark-adapted Limulus eye in situ underlie the dual properties of the impulse discharge of the optic nerve fibers. The small potential fluctuations (SPFs)--the well-known quantum bumps--were normally less than 20 mV in amplitude. The large potential fluctuations (LPFs) were up to 80 mV in amplitude. LPFs appear to be regenerative events triggered by SPFs that enable single photon absorptions in retinular cells to fire off nerve impulses in the eccentric cell. In the dark, SPFs and LPFs occur spontaneously. At low light intensities, LPFs are the major components of the receptor potential. At high intensities, LPFs are suppressed and SPFs become the major components. SPFs and LPFs together enable single photoreceptor cells to encode approximately a 9-log unit range of light intensity. Excising the eye from the animal or cutting off its blood supply generally abolishes LPFs and thereby reduces the range of light intensity coded in the optic nerve discharge.  相似文献   

2.
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo‐ and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Immunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light‐ and ultrastructural investigations in well‐defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.

…Clearly more work will be necessary before truly informed judgements can be made about the functional significance of the diversity in photoreception for entrainment. A first step will be the precise identification of photoreceptors and investigations of the mechanisms of transduction, processing and transmission of temporal information provided by the daily light cycle.…” ()  相似文献   

3.
In addition to regular photoreceptors, some invertebrates possess simple extraocular photoreceptors. For example, the central ganglia of mollusks contain photosensitive neurons. These neurons are located on the dorsal surface of the ganglia and based on their electrophysiological properties, it has been postulated that they are the internal photoreceptors. However, besides the eye, transduction of the light also occurs in these extra-ocular photoreceptors. In the present work, we analyse the reactivity of these nerve cells to light and describe the underlying mechanism mediating the light-induced response.  相似文献   

4.
Kawai F  Horiguchi M  Suzuki H  Miyachi E 《Neuron》2001,30(2):451-458
Mammalian photoreceptors are hyperpolarized by a light stimulus and are commonly thought to be nonspiking neurons. We used the whole-cell patch-clamp technique on surgically excised human retina to examine whether human photoreceptors can elicit action potentials. We discovered that human rod photoreceptors express voltage-gated Na(+) channels, and generate Na(+) action potentials, in response to membrane depolarization from membrane potentials of -60 or -70 mV. Na(+) spikes in human rods were elicited at the termination of a light response that hyperpolarized the potential well below -50 mV. This served to amplify the release of a neurotransmitter when a bright light is turned off, and thus selectively amplify the off response to the light signal.  相似文献   

5.
Transient receptor potential (TRP) channels mediate light-induced Ca(2+) entry and the electrical response in Drosophila photoreceptors. The role of TRP channels in other invertebrate photoreceptors is unknown, particularly those, exemplified by Limulus ventral eye photoreceptors, in which calcium release from intracellular stores is prominent. We have amplified cDNA encoding three variants of a Limulus TRP channel. LptrpA and LptrpBencode proteins of 896 and 923 amino acids, differing by a 27 amino acid insert within the C-terminus. LptrpC encodes an alternative 63 amino acid sequence in the pore domain compared with LptrpB. LptrpB and LptrpC are present in ventral eye mRNA, while LptrpA is only present in brain mRNA. In situ hybridization indicates the presence of Lptrp in photoreceptors of the Limulus ventral eye. Some canonical TRP channels can be activated by diacylglycerol analogs. Injection of a diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), into Limulus photoreceptors can activate an inward current with electrical characteristics similar to the light-activated current. However, simultaneous elevation of cytosolic calcium concentration appears to be necessary. Illumination attenuates the response to OAG injections and vice versa. These results provide molecular and pharmacological evidence for a TRP channel in Limulus ventral eye that may contribute to the light-sensitive conductance.  相似文献   

6.
Summary Behavioural experiments demonstrate that embryos and young larval stages ofXenopus laevis when exposed to a sudden drop in light intensity may show locomotor activity. Recordings from motoneurone axons demonstrate that the integrity of the pineal eye photoreceptors are essential for this response to occur. Thus the pineal has a direct excitatory effect on behaviour.The pineal eye arises embryologically as a single dorsal vesicular evagination of the diencephalon and anatomically it is very similar to that of other developing amphibians.Recording from the pineal eye using a suction electrode demonstrates that suddenly lowering the light intensity evokes a burst of impulses followed by a raised firing frequency. Conversely, increasing the light intensity leads to a lowered firing frequency. With prolonged exposure to white light at a range of intensities, the frequency of spike discharge is dependent upon the light intensity. The pineal eye can therefore act as a luminance detector.The pineal photoreceptors are most sensitive to light of a wavelength near 520 nm, this probably enables maximum sensitivity to the wavelengths of light that penetrate the freshwater environment.The possible role of the pineal eye in controlling locomotor activity is discussed.Abbreviations HRP horse raddish peroxidase - SEM scanning electron microscopy  相似文献   

7.
A single eye is present in females of the nematode Mermis nigrescens. A pigment cup occupies the entire cross section near the anterior tip of the worm, and the curved cuticle at the tip becomes a cornea. The shading pigment is hemoglobin instead of melanin. The eye has been shown to provide a positive phototaxis utilizing a scanning mechanism; however, the eye's structure has not been sufficiently described. Here, we provide a reconstruction of the eye on the basis of light and electron microscopy of serial sections. Hemoglobin crystals are densely packed in the cytoplasm of expanded hypodermal cells, forming the cylindrical shadowing structure. The two putative photoreceptors are found laterally within the transparent conical center of this structure where they would be exposed to light from different anterior fields of view. Each consists of a multilamellar sensory process formed by one of the dendrites in each of the two amphidial sensory nerve bundles that pass through the center. Multilamellar processes are also found in the same location in immature adult females and fourth stage juvenile females, which lack the shadowing pigment and exhibit a weak negative phototaxis. The unique structure of the pigment cup eye is discussed in terms of optical function, phototaxis mechanism, eye nomenclature, and evolution.  相似文献   

8.
The effect of lanthanum on the light response of blowfly (Calliphora erythrocephala) photoreceptors was studied. The electrophysiological behaviour of the photoreceptors in the presence of La can be summarized as follows: 1. Upon long stimulation the photoreceptors responded with a 'transient receptor potential', i.e. the cells depolarized at the onset of the stimulus and then repolarized to (or below) the resting potential. This effect was dependent on stimulus intensity and occurred only at high intensities. During illumination membrane noise was reduced. 2. The light-induced changes in membrane potential were paralleled by changes in membrane resistance. 3. The time course of the receptor response was slowed down. 4. Light adaptation led to an increase in response latency. 5. The recovery of the receptor response after light adaptation was slowed down. 6. The sensitivity of the receptor cells measured by the response to short light stimuli was reduced. In summary, the electrophysiological behaviour of Calliphora photoreceptors in the presence of La was very similar to that of the photoreceptors of the trp (transient receptor potential) mutant of Drosophila melanogaster. This result suggests that La and trp mutation affect the same cellular processes in the photoreceptors.  相似文献   

9.
Summary The eye of the mollusk Bulla gouldiana contains a pacemaker that generates a circadian rhythm in compound action potentials (CAPs) in the optic nerve. In this paper, we present evidence of a second circadian rhythm in the optic nerve of the eye maintained in darkness at 15 °C. This is a rhythm in the frequency of small (10–40 V) neural impulses that occurs about 12 h out-of-phase with the rhythm in CAPs. Typically, the small-spike frequency is at a minimum within an hour of the peak in CAP frequency and is maximal during the subjective night. Like the CAP rhythm, the phase of the small-spike rhythm is determined by the prior light/dark cycle. A rebound in small-spike activity following the end of a light pulse and the presence of photoinhibited impulses in surgically reduced eyes suggests that the cells that generate the small-spikes may be photoreceptors that are inhibited by light. In addition, by using isolated nervous system preparations, we have found that smallspikes occur in the two optic nerves in a one-for-one relationship immediately following a light-to-dark transition. This inter-eye communication may be involved in the coupling of the ocular pacemakers.Abbreviations ASW artificial sea water - BRN basal retinal neuron - CAP compound action potential  相似文献   

10.
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo- and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Imnunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light- and ultrastructural investigations in well-defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.  相似文献   

11.
Membrane leaves the rhabdom of Limulusphotoreceptors either by transient shedding at dawn or throughout the day by light-driven shedding. We examined whether the light trigger for transient shedding and the light drive for light-driven shedding are localized properties of the illuminated photoreceptors or whether they are an array property of the retina. Four experiments were conducted during which the lateral eye was exposed to one of a variety of different illumination patterns for a day, fixed, dissected and cut into serial frozen sections. Immunocytochemistry with different antibodies to Limulus opsin and arrestin revealed the results of the two processes in a distinguishable way. Eyes stimulated with whole-eye illumination had both types of shedding or just light-driven shedding when transient shedding was blocked by cutting the optic nerve. Eyes exposed to whole-eye darkness had neither type of shedding. However, when only half of an eye was exposed to light, the dark half had the same kinds of shedding as the lighted half. We conclude that the signals to trigger or drive shedding must be communicated laterally from illuminated ommatidia to unilluminated ommatidia. Rhabdom shedding is an array property.  相似文献   

12.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

13.
The effects of the intracellular iontophoretic injection of Na+ ions have been quantitatively compared with adaptation in ventral photoreceptors of Limulus. We find that: (a) both light adaptation and sodium injection are associated with a decrease in the variability of the threshold response amplitued; (b) both light adaptation and sodium injection are associated with a decrease in the absolute value of the temporal dispersion of the threshold response time delay; (c) the same template curve adequately fits the intensity response relationships measured under light adaptation and Na+ injection; (d) both light adaptation and Na+ injection produce a fourfold decrease in response time delay for a desensitization of 3 log units; (e) the time coures of light adaptation and dark adaptation is significantly faster than the onset of and recovery from desensitization produced by Na+ injection; (f) unlike local illumination, Na+ injection does not produce localized desensitization of the photoreceptor. These findings suggest that a rise in intracellular Na+ concentration makes at most only a minor contribution (probably less than 5%) to the total adaptation of these receptors in the intensity range we have examined (up to 3 log units above absolute threshold). However, changes in intracellular Na+ concentration may contribute to certain components of light and dark adaptation in these receptors.  相似文献   

14.
Many animals have been shown to use the pattern of polarized light in the sky as an optical compass. Specialised photoreceptors are used to analyse this pattern. We here present evidence for an eye design suitable for polarized skylight navigation in the flightless desert scarab Pachysoma striatum. Morphological and electrophysiological studies show that an extensive part of the dorsal eye is equivalent to the dorsal rim area used for polarized light navigation in other insects. A polarization-sensitivity of 12.8 (average) can be recorded from cells sensitive to the ultraviolet spectrum of light. Features commonly known to increase the visual fields of polarization-sensitive photoreceptors, or to decrease their spatial resolution, are not found in the eye of this beetle. We argue that in this insect an optically unspecialised area for polarized light detection allows it not be used exclusively for polarized light navigation.  相似文献   

15.
The experiments reported here were designed to answer the question of whether inositol 1,4,5-trisphosphate (IP3)-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors. For this purpose the membrane-permeable IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2APB) (Maruyama, T., T. Kanaji, S. Nakade, T. Kanno, and K. Mikoshiba. 1997. J. Biochem. (Tokyo). 122:498-505) was used. Previously, 2APB was found to inhibit the light activated current of Limulus ventral photoreceptors and reversibly inhibit both light and IP3 induced calcium release as well as the current activated by pressure injection of calcium into the light sensitive lobe of the photoreceptor (Wang, Y., M. Deshpande, and R. Payne. 2002. Cell Calcium. 32:209). In this study 2APB was found to inhibit the response to a flash of light at all light intensities and to inhibit the entire light response to a step of light, that is, both the initial transient and the steady-state components of the response to a step of light were inhibited. The light response in cells injected with the calcium buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was reversibly inhibited by 2APB, indicating that these light responses result from IP3-mediated calcium release giving rise to an increase in Cai. The light response obtained from cells after treatment with 100 microM cyclopiazonic acid (CPA), which acts to empty intracellular calcium stores, was reversibly inhibited by 2APB, indicating that the light response after CPA treatment results from IP3-mediated calcium release and a consequent rise in Cai. Together these findings imply that IP3-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors.  相似文献   

16.
Most species use daily light in one way or the other in regulation of their short and/or long term activities. Light is perceived by pigment(s) present in the retinal (RP) and/or extra-retinal photoreceptors (ERPs). ERPs may be located at various sites in the body but in non-mammalian vertebrates they are found predominantly in the pineal body and hypothalamic region of the brain, Light radiations directly penetrate brain tissues to reach and stimulate the hypothalamic (deep-brain) photoreceptors. How does light information finally reach to the clock is not fully understood in many vertebrate groups? In mammals, however, the light information from the retina to the clock (the hypothalamic suprachiasmatic nuclei, SCN) is relayed through the retino-hypothalamic tract (RHT) which originates from the retinal ganglion cells, and through the geniculo-hypothalamic tract (GHT) which originates from the photically responsive cells of a portion of the lateral geniculate nucleus (LGN), called the intergeniculate leaflet (IGL). A response to light (the photoperiodic response) is the result of the interpretation of light information by the photoperiodic system. Apart from the duration, the animals use the gradual shifts in the intensity and wavelength of daily light to regulate their photoperiodic clock system. The wavelengths to which photoreceptors are maximally sensitive or the wavelengths which have greater access to the photoreceptors can induce a maximal response. There can also be differential effects of wavelength and intensity of light on circadian process(es) involved in the entrainment and induction of the photoperiodic clock. This may have some adaptive implications. Entrainment to daily light-dark (LD) cycle may be achieved at dawn or dusk, depending whether the animal is day- or night-active, when there is relatively low intensity of light. By contrast, photoperiodic induction in many species occurs during long days of spring and summer when plenty of daylight at higher intensity is available later in the day.  相似文献   

17.
Calcium ions were iontophoretically injected into ventral photoreceptors of Limulus by passing current between two intracellular pipettes. Changes in sensitivity and photoresponse time course were measured for both light adaptation and Ca++ injection. We found for some photoreceptors that there was no significant difference in the photoresponse time course for desensitization produced by light adaptation or by Ca++ injection. In other photoreceptors, the time delay of photoresponse for Ca++ injection was slightly longer than for light adaptation. The variability of threshold response amplitude and time delay decreases when the photoreceptor is desensitized by either light adaptation or Ca++ injection. The peak amplitude versus log stimulus intensity relationships for controls, light adaptation, and Ca++ injection all could be described very closely by a single template curve shifted along the log intensity axis. A 40- to 50-fold change in sensitivity is associated with a 2-fold change in photoresponse time delay for both light adaptation and Ca++ injection.  相似文献   

18.
The photoreceptors of many animals adapt, when illuminated, by reducing their sensitivities to light and improving their response speeds. Light adaptation is usually considered to be rapid and complete within minutes. However, under bright light conditions, I show that functionally significant improvements in impulse response amplitude and speed continue over the course of an hour in photoreceptors of the fly, Musca domestica. After sustained illumination, the average information rate, a measure of signalling performance, improved by 28% in a sample of sixteen photoreceptors. This long-term light adaptation is a robust phenomenon across animals and is repeatable within the same cell when light-adapting sessions are separated by a period of darkness. White-noise analysis of voltage responses to light and current stimuli indicate that much of the long-term changes observed are attributable to an improvement in the reliability with which photoreceptors register the timing of photon absorptions. It is also found that the impedance amplitude of the photoreceptor increases during long-term adaptation, suggesting that the area of the photoreceptor's membrane is reduced.  相似文献   

19.
20.
Basic fibroblast growth factor (bFGF) has proven neuroprotective efficacy in the rodent retina against a diverse array of injurious stimuli. However, there is no consensus to date as to the molecular mechanisms underlying this neuroprotection. The study presented herein demonstrates increased expression of endogenous bFGF in the albino mouse retina in response to acute exposure to sublethal levels of light stress. The increased expression correlates with significant photoreceptor protection from light damage. The neuroprotection is likely to be mediated by bFGF as we demonstrate that a shorter exposure to bright light stress that does not up-regulate bFGF fails to protect photoreceptors from light damage. Furthermore, intravitreal bFGF injection into the retina of mice 3 h prior to light damage affords almost complete photoreceptor protection from light-induced degeneration. In addition, injected bFGF induces the activation of protein kinase B and extracellular signal-regulated kinase 1/2 signalling which correlate directly with the pathways we find to be activated in response to light stress and up-regulated bFGF. Moreover, we demonstrate that both bright light pre-conditioning and intravitreal bFGF injection result in dramatic increases in levels of inactive glycogen synthase kinase 3β and cyclic AMP response element binding protein phosphorylation indicating a potential mechanism by which bFGF promotes survival of photoreceptors in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号