首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell cycle ofSaccharomyces cerevisiae contains a decision point in G1 called start, which is composed of two specific sites. Nutrient-starved cells arrest at the first site while pheromone-treated cells arrest at the second site. Functioning of the RAS-adenylate cyclase pathway is required for progression over the nutrient-starvation site while overactivation of the pathway renders the cells unable to arrest at this site. However, progression of cycling cells over the nutrient-starvation site does not appear to be triggered by the RAS-adenylate cyclase pathway in response to a specific stimulus, such as an exogenous nutrient. The essential function of the pathway appears to be limited to provision of a basal level of cAMP. cAMP-dependent protein kinase rather than cAMP might be the universal integrator of nutrient availability in yeast. On the other hand stimulation of the pathway in glucose-derepressed yeast cells by rapidly-fermented sugars, such as glucose, is well documented and might play a role in the control of the transition from gluconeogenic growth to fermentative growth. The initial trigger of this signalling pathway is proposed to reside in a glucose sensing complex which has both a function in controlling the influx of glucose into the cell and in activating in addition to the RAS-adenylate cyclase pathway all other glucose-induced regulatory pathways in yeast. Two crucial problems remaining to be solved with respect to cell cycle control are the nature of the connection between the RAS-adenylate cyclase pathway and nitrogen-source induced progression over the nutrient-starvation site of start and second the nature of the downstream processes linking the RAS-adenylate cyclase pathway to Cyclin/CDC28 controlled progression over the pheromone site of start.Abbreviations cAMP-PK cAMP-dependent protein kinase  相似文献   

2.
Yeast-like fungi such as Saccharomyces cerevisiae exhibit a range of cell types differing in cell shape, gene expression and growth pattern. Signal transduction pathways mediate transitions between different cell types. Nutritional signals induce rounded yeast-form cells either to enter invasive growth as elongated filamentous cells or to arrest to prepare for stationary phase, conjugation, or meiosis. An emerging theme is that development critically depends upon differential regulation of vegetative functions, including cytoskeletal organization and cell cycle progression, as much as on the expression of cell type specific gene products.  相似文献   

3.
The trehalose-degrading enzyme trehalase is activated upon addition of glucose to derepressed cells or in response to nitrogen source addition to nitrogen-starved glucose-repressed yeast (Saccharomyces cerevisiae) cells. Trehalase activation is mediated by phosphorylation. Inactivation involves dephosphorylation, as trehalase protein levels do not change upon multiple activation/inactivation cycles. Purified trehalase can be inactivated by incubation with protein phosphatase 2A (PP2A) in vitro. To test whether PP2A was involved in trehalase inactivation in vivo, we overexpressed the yeast PP2A isoform Pph22. Unexpectedly, the moderate (approximately threefold) overexpression of Pph22 that we obtained increased basal trehalase activity and rendered this activity unresponsive to the addition of glucose or a nitrogen source. Concomitant with higher basal trehalase activity, cells overexpressing Pph22 did not store trehalose efficiently and were heat sensitive. After the addition of glucose or of a nitrogen source to starved cells, Pph22-overexpressing cells showed a delayed exit from stationary phase, a delayed induction of ribosomal gene expression and constitutive repression of stress-regulated element-controlled genes. Deletion of the SCH9 gene encoding a protein kinase involved in nutrient-induced signal transduction restored glucose-induced trehalase activation in Pph22-overexpressing cells. Taken together, our results indicate that yeast PP2A overexpression leads to the activation of nutrient-induced signal transduction pathways in the absence of nutrients.  相似文献   

4.
The cytosolic 185 and 210 kDa Bcr-Abl protein tyrosine kinases play important roles in the development of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (Ph+ ALL). p185 and p210 Bcr-Abl contain identical abl-encoded sequences juxtaposed to a variable number of bcr-derived amino acids. As the mitogenic and transforming activities of tyrosine kinases involve stimulation of the Ras pathway, we analyzed Bcr-Abl oncoproteins for interactions with cytoplasmic proteins that mediate Ras activation. Such polypeptides include Grb2, which comprises a single Src homology 2 (SH2) domain flanked by two SH3 domains, and the 66, 52 and 46 kDa Shc proteins which possess an SH2 domain in their carboxy-terminus. Grb2 associates with tyrosine phosphorylated proteins through its SH2 domain, and with the Ras guanine nucleotide releasing protein mSos1 through its SH3 domains. mSos1 stimulates conversion of the inactive GDP-bound form of Ras to the active GTP-bound state. In bcr-abl-transformed cells, Grb2 and mSos1 formed a physical complex with Bcr-Abl. In vitro, the Grb2 SH2 domain bound Bcr-Abl through recognition of a tyrosine phosphorylation site within the amino-terminal bcr-encoded sequence (p.Tyr177-Val-Asn-Val), that is common to both Bcr-Abl proteins. These results suggest that autophosphorylation within the Bcr element of Bcr-Abl creates a direct physical link to Grb2-mSos1, and potentially to the Ras pathway, and thereby modifies the target specificity of the Abl tyrosine kinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The phosphorylation of fructose-1,6-bisphosphatase is preceded by a transient increase in the intracellular level of cyclic AMP which activates a cyclic AMP-dependent protein kinase (Pohlig, G., and Holzer, H. (1985) J. Biol. Chem. 260, 13818-13823). Possible mechanisms by which sugars or ionophores might activate adenylate cyclase and thereby lead to an increase in cyclic AMP concentrations were studied. Studies with permeabilized yeast cells demonstrated that neither sugar intermediates nor carbonyl cyanide m-chlorophenylhydrazone are able to increase adenylate cyclase activity. In the light of striking differences of the effects of fermentable sugars and of carbonyl cyanide m-chlorophenylhydrazone on parameters characterizing the membrane potential, it seems not reasonable that the activity of adenylate is under control of the membrane potential. Rapid quenching of 9-aminoacridine fluorescence after addition of fermentable sugars to starved yeast cells indicated an intracellular acidification. The 31P NMR technique showed a fast drop of the intracellular pH from 6.9 to 6.55 or 6.4 immediately after addition of glucose or carbonyl cyanide m-chlorophenylhydrazone. The time course of the decrease of the cytosolic pH coincides with the transient increase of cyclic AMP concentration and the 50% inactivation of fructose-1,6-bisphosphatase under the conditions of the NMR experiments. Kinetic studies of adenylate cyclase activity showed an approximately 2-fold increase of activity when the pH was decreased from 7.0 to 6.5, which is the result of a decrease in the apparent Km for ATP with no change in Vmax. These studies suggest that activation of adenylate cyclase by decrease in the cytosolic pH starts a chain of events leading to accumulation of cyclic AMP and phosphorylation of fructose-1,6-bisphosphatase.  相似文献   

6.
p53-mediated cell death: relationship to cell cycle control.   总被引:27,自引:8,他引:27       下载免费PDF全文
M1 clone S6 myeloid leukemic cells do not express detectable p53 protein. When stably transfected with a temperature-sensitive mutant of p53, these cells undergo rapid cell death upon induction of wild-type (wt) p53 activity at the permissive temperature. This process has features of apoptosis. In a number of other cell systems, wt p53 activation has been shown to induce a growth arrest. Yet, wt 53 fails to induce a measurable growth arrest in M1 cells, and cell cycle progression proceeds while viability is being lost. There exists, however, a relationship between the cell cycle and p53-mediated death, and cells in G1 appear to be preferentially susceptible to the death-inducing activity of wt p53. In addition, p53-mediated M1 cell death can be inhibited by interleukin-6. The effect of the cytokine is specific to p53-mediated death, since apoptosis elicited by serum deprivation is refractory to interleukin-6. Our data imply that p53-mediated cell death is not dependent on the induction of a growth arrest but rather may result from mutually incompatible growth-regulatory signals.  相似文献   

7.
Integrative analysis of cell cycle control in budding yeast   总被引:14,自引:0,他引:14       下载免费PDF全文
The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo.  相似文献   

8.
MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.  相似文献   

9.
10.
Place SP  Smith BW 《PloS one》2012,7(3):e34068
Previous studies have shown fertilization and development of marine species can be significantly inhibited when the pH of sea water is artificially lowered. Little mechanistic understanding of these effects exists to date, but previous work has linked developmental inhibition to reduced cleavage rates in embryos. To explore this further, we tested whether common cell cycle checkpoints were involved using three cellular biomarkers of cell cycle progression: (1) the onset of DNA synthesis, (2) production of a mitotic regulator, cyclin B, and (3) formation of the mitotic spindle. We grew embryos of the purple sea urchin, Strongylocentrotus purpuratus, in seawater artifically buffered to a pH of ~7.0, 7.5, and 8.0 by CO(2) infusion. Our results suggest the reduced rates of mitotic cleavage are likely unrelated to common cell cycle checkpoints. We found no significant differences in the three biomarkers assessed between pH treatments, indicating the embryos progress through the G(1)/S, G(2)/M and metaphase/anaphase transitions at relatively similar rates. These data suggest low pH environments may not impact developmental programs directly, but may act through secondary mechanisms such as cellular energetics.  相似文献   

11.
12.
The existence of a response to acetylcholine (ACh) and cholinomimetic drugs in sea urchin eggs and zygotes was investigated in two sea urchin species: Paracentrotus lividus and Lytechinus pictus. The calcium sensitive fluorescent probe, Fura-2 dextran, was employed to investigate the regulation of cytosolic free calcium concentration ([Ca(2+)](i)) by cholinomimetic drugs in unfertilised and fertilised eggs of both the sea urchin species. Exposure to cholinomimetic agonists/antagonists, either extracellularly or intracellularly, had no effect either on resting [Ca(2+)](i) levels in the unfertilised sea urchin egg, or on the transient [Ca(2+)](i) increase at fertilisation. However, following fertilisation, extracellular application of ACh receptors agonists, such as ACh and carbachol, predominantly muscarinic agonist, but not nicotine, induced a significant increase in [Ca(2+)](i), which was partially inhibited by atropine. As a consequence of exposure after fertilisation to the agonists of ACh receptors, chromatin structure was transiently affected. The hypothesis is proposed that muscarinic receptors may be involved in the (presumably Ca(2+)-dependent) modulation of the nuclear status during the first cell cycles.  相似文献   

13.
14.
In this issue of Structure, Rood and colleagues report that substrate architecture is a key factor in promoting the complete and processive degradation of the Caulobacter cell cycle regulator PdeA by the protease ClpXP. This investigation highlights the important role that the adaptor protein CpdR serves in regulating presentation of PdeA to ClpXP.  相似文献   

15.
16.
An altered adenylate cyclase in cdc35-1 cell division cycle mutant of yeast   总被引:2,自引:0,他引:2  
Adenylate cyclase activity was studied in Saccharomyces cerevisiae's cell division cycle (cdc) mutant 35-1. The temperature sensitive mutant cdc35-1 was previously mapped as an allele of cyr, the adenylate cyclase gene. However, the adenylate cyclase activities of membranes prepared from cdc35-1 were not thermosensitive. The adenylate cyclase activity of cdc35-1 was found to have an altered Mn2+ dependency and did not respond to Gpp(NH)p stimulation. These results suggest that cdc35-1 mutation may not be at the catalytic site but at a site where adenylate cyclase interacts with regulatory proteins.  相似文献   

17.
18.
We uncovered the underlying energy landscape for a cellular network. We discovered that the energy landscape of the yeast cell-cycle network is funneled towards the global minimum (G0/G1 phase) from the experimentally measured or inferred inherent chemical reaction rates. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. The funneled landscape can be seen as a possible realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.  相似文献   

19.
Using indirect methods based on uptake of [3H]tetraphenylphosphonium cation and [14C]benzoic acid by cells of the fungus Trichoderma viride we found that the illumination-induced transient hyperpolarization of the plasma membrane is followed immediately by a rapid temporary decrease in intracellular pH. Hyperpolarization and intracellular acidification were completely suppressed by 150 mM-KCl and by the K(+)-ionophore valinomycin. The light-induced acidification of the cytoplasm was not observed in the presence of the cytochrome respiratory chain inhibitors antimycin A and mucidin. Based on these results, we hypothesize that the hyperpolarization of the cells is the consequence of an efflux of K+ through a light-activated K(+)-channel in the plasma membrane. The loss of positive charge in the cytoplasm caused by this efflux of cations is counterbalanced by H+ originating from the light-activated mitochondrial respiratory chain.  相似文献   

20.
Over the past decade Hippo kinase signalling has been established as an essential tumour suppressor pathway controlling tissue growth in flies and mammals. All members of the Hippo core signalling cassette are conserved from yeast to humans, whereby the yeast analogues of Hippo, Mats and Lats are central components of the mitotic exit network and septation initiation network in budding and fission yeast, respectively. Here, we discuss how far core Hippo signalling components in Drosophila melanogaster and mammals have reported similar mitotic functions as already established for their highly conserved yeast counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号