首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the potential contribution of innate immune responses to the early proinflammatory cytokine response to Plasmodium falciparum malaria, we have examined the kinetics and cellular sources of IFN-gamma production in response to human PBMC activation by intact, infected RBC (iRBC) or freeze-thaw lysates of P. falciparum schizonts. Infected erythrocytes induce a more rapid and intense IFN-gamma response from malaria-naive PBMC than do P. falciparum schizont lysates correlating with rapid iRBC activation of the CD3(-)CD56(+) NK cell population to produce IFN-gamma. IFN-gamma(+) NK cells are detectable within 6 h of coculture with iRBC, their numbers peaking at 24 h in most donors. There is marked heterogeneity between donors in magnitude of the NK-IFN-gamma response that does not correlate with mitogen- or cytokine-induced NK activation or prior malaria exposure. The NK cell-mediated IFN-gamma response is highly IL-12 dependent and appears to be partially IL-18 dependent. Exogenous rIL-12 or rIL-18 did not augment NK cell IFN-gamma responses, indicating that production of IL-12 and IL-18 is not the limiting factor explaining differences in NK cell reactivity between donors or between live and dead parasites. These data indicate that NK cells may represent an important early source of IFN-gamma, a cytokine that has been implicated in induction of various antiparasitic effector mechanisms. The heterogeneity of this early IFN-gamma response between donors suggests a variation in their ability to mount a rapid proinflammatory cytokine response to malaria infection that may, in turn, influence their innate susceptibility to malaria infection, malaria-related morbidity, or death from malaria.  相似文献   

2.
Human NK cells can respond rapidly to Plasmodium falciparum-infected RBC (iRBC) to produce IFN-gamma. In this study, we have examined the heterogeneity of this response among malaria-naive blood donors. Cells from all donors become partially activated (up-regulating CD69, perforin, and granzyme) upon exposure to iRBC but cells from only a subset of donors become fully activated (additionally up-regulating CD25, IFN-gamma, and surface expression of lysosomal-associated membrane protein 1 (LAMP-1)). Although both CD56dim and CD56bright NK cell populations can express IFN-gamma in response to iRBC, CD25 and LAMP-1 are up-regulated only by CD56dim NK cells and CD69 is up-regulated to a greater extent in this subset; by contrast, perforin and granzyme A are preferentially up-regulated by CD56bright NK cells. NK cells expressing IFN-gamma in response to iRBC always coexpress CD69 and CD25 but rarely LAMP-1, suggesting that individual NK cells respond to iRBC either by IFN-gamma production or cytotoxicity. Furthermore, physical contact with iRBC can, in a proportion of donors, lead to NK cell cytoskeletal reorganization suggestive of functional interactions between the cells. These observations imply that individuals may vary in their ability to mount an innate immune response to malaria infection with obvious implications for disease resistance or susceptibility.  相似文献   

3.
The killer cell Ig-like receptor (KIR) gene, KIR3DS1, has been implicated in slowing disease progression in HIV infection; however, little is known about its expression, function, or ligand specificity. Using retrovirally transduced NKL cells and peripheral blood NK cells from KIR3DS1-positive donors we assessed expression of this gene by flow cytometry and its function by in vitro assays measuring KIR3DS1-induced cell-mediated cytotoxicity and cytokine production. In the present study, we demonstrate that KIR3DS1 is expressed on peripheral blood NK cells and triggers both cytotoxicity and IFN-gamma production. Using cotransfection and coimmunoprecipitation, we found that KIR3DS1 associates with the ITAM-bearing adaptor, DAP12. Soluble KIR3DS1-Ig fusion proteins did not bind to EBV-transformed B lymphoid cell lines transfected with HLA-Bw4 80I or 80T allotypes, suggesting that if KIR3DS1 does recognize HLA-Bw4 ligands, this may be peptide dependent.  相似文献   

4.
Activated NK cells lyse tumor cells and virus-infected cells and produce IFN-gamma upon contact with sensitive target cells. The regulation of these effector responses in resting NK cells is not well understood. We now describe a receptor, KIR2DL4, that has the unique property of inducing IFN-gamma production, but not cytotoxicity, by resting NK cells in the absence of cytokines. In contrast, the NK cell-activation receptors CD16 and 2B4 induced cytotoxicity but not IFN-gamma production. The induction by KIR2DL4 of IFN-gamma production by resting NK cells was blocked by an inhibitor of the p38 mitogen-activated protein kinase signaling pathway, in contrast to the IL-2-induced IFN-gamma secretion that was sensitive to inhibition of the extracellular signal-regulated kinase mitogen-activated protein kinase pathway. These results reveal a functional dichotomy (cytokine production vs cytotoxicity) in the response of resting NK cells, as dictated by the signals of individual receptors.  相似文献   

5.
KIR2DL4 (2DL4, CD158d), a member of the human killer cell Ig-like receptor (KIR) family, triggers potent IFN-gamma responses but weak cytotoxicity in resting NK cells. 2DL4 mRNA has been detected in most NK cell clones from most humans examined, but surface protein expression is detectable only on CD56(high) NK cells from certain donors. The receptor possesses a transmembrane arginine residue, suggesting association with a signaling accessory protein that has remained elusive. We provide biochemical and functional evidence that FcepsilonRI-gamma (gamma) associates with 2DL4 to promote surface expression and provide signal transducing function. Weak cytolytic responses triggered through 2DL4 may result from low stoichiometric association with gamma. Selective association with gamma distinguishes 2DL4 from all other activating forms of the KIR family, which alternatively associate with DNAX-activating protein (DAP)12.  相似文献   

6.
The inhibitory 2DL1 and activating 2DS1 killer Ig-like receptors (KIR) both have shared ligand specificity for codon sequences in the C2 group HLA-Cw Ags. In this study, we have investigated NK cell activation by allogeneic target cells expressing different combinations of the HLA-KIR ligand groups C1, C2, and Bw4. We demonstrate that fresh NK cells as well as IL-2-propagated NK cells from 2DS1-positive donors that are homozygous for the C1 ligand group are activated in vitro by B lymphoblastoid cell lines expressing the C2 group. This response is, in part, due to the absence of C1 group recognition mediated by the inhibitory receptor 2DL2/3. This "missing self" alloresponse to C2, however, is rarely observed in NK cells from donors lacking 2DS1. Even in presence of 2DS1, the NK alloresponse is dramatically reduced in donors that have C2 group as "self." Analysis of selected NK clones that express 2DS1 mRNA and lack mRNA for 2DL1 demonstrates that activation by the C2 ligand and mAb cross-linking of 2DS1 in these clones induces IFN-gamma. Furthermore, this C2 group-induced activation is inhibited by Abs to both HLA class I and the receptor. Collectively, these studies demonstrate that NK cells from 2DS1-positive donors are activated by target cells that express the C2 group as an alloantigen. This leads to increased IFN-gamma-positive fresh NK cells and induces NK allocytotoxicity in IL2-propagated polyclonal NK cells and NK clones. This study also provides support for the concept that incompatibility for the HLA-KIR ligand groups C1, C2, and Bw4 dominates NK alloactivation in vitro.  相似文献   

7.
Genetic control of human NK cell repertoire   总被引:28,自引:0,他引:28  
Through differential killer cell Ig-like receptor (KIR) and CD94:NKG2 gene expression, human NK cells generate diverse repertoires, each cell having an inhibitory receptor for autologous HLA class I. Using a new method for measuring repertoire difference that integrates multiple flow cytometry parameters, we found individual repertoire stability, but population variability. Correlating repertoire differences with KIR and HLA genotype for 85 sibling pairs reveals the dominant influence of KIR genotype; HLA genotype having a subtle, modulating effect on relative KIR expression frequencies. HLA and/or KIR genotype also influences CD94:NKG2A expression. After HLA-matched stem cell transplantation, KIR repertoires either recapitulated that of the donor or were generally depressed for KIR expression. Human NK cell repertoires are defined by combinations of variable KIR and HLA class I genes and conserved CD94:NKG2 genes.  相似文献   

8.
Böttger E  Multhoff G  Kun JF  Esen M 《PloS one》2012,7(3):e33774
In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo.  相似文献   

9.
Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells   总被引:6,自引:0,他引:6  
NK cells express both inhibitory and activatory receptors that allow them to recognize target cells through HLA class I Ag expression. KIR3DL1 is a receptor that recognizes the HLA-Bw4 public epitope of HLA-B alleles. We demonstrate that polymorphism within the KIR3DL1 receptor has functional consequences in terms of NK cell recognition of target. Inhibitory alleles of KIR3DL1 differ in their ability to recognize HLA-Bw4 ligand, and a consistent hierarchy of ligand reactivity can be defined. KIR3DS1, which segregates as an allele of KIR3DL1, has a short cytoplasmic tail characteristic of activatory receptors. Because it is very similar to KIR3DL1 in the extracellular domains, it has been assumed that KIR3DS1 will recognize a HLA-Bw4 ligand. In this study, we demonstrate that KIR3DS1 is expressed as a protein at the cell surface of NK cells, where it is recognized by the Z27 Ab. Using this Ab, we found that KIR3DS1 is expressed on a higher percentage of NK cells in KIR3DS1 homozygous compared with heterozygous donors. In contrast to the inhibitory KIR3DL1 allotypes, KIR3DS1 did not recognize HLA-Bw4 on EBV-transformed cell lines.  相似文献   

10.
It has been proposed that progesterone (P4) induces the suppression of immune responses, particularly during pregnancy. However, knowledge about the mechanisms involved has remained largely elusive. We demonstrate herein that peripheral blood NK (PBNK) cells express both classical progesterone receptor (PR) isoforms and are specifically affected by the actions of P4 through two apparently independent mechanisms. Progesterone induces caspase-dependent PBNK cell death, which is reversed by two different anti-progestins, ZK 98.299 and RU 486, supporting the involvement of classical PR isoforms. It was suggested that CD56(bright)CD16(-) killer Ig-like receptor (KIR)(-) NK cells might represent precursor cells, which, upon activation, acquire the features of a more mature NK subset expressing KIR receptors. The present study demonstrates that PR expression seems to be restricted to more mature KIR(+) PBNK cells. The expression of PR had a functional counterpart in the suppressive effect of P4 on IL-12-induced IFN-gamma secretion. This cytokine suppression was mainly observed in KIR(+) PBNK cells, without affecting the high secretion of IFN-gamma by CD56(bright) PBNK cells. The lack of PR expression on CD56(bright)KIR(-) PBNK cells provides an additional phenotypic marker to test the idea that they might represent the PBNK precursors selectively recruited into the endometrium where they differentiate to become the uterine NK cells. Additionally, these findings may be relevant to NK cell function in viral immunity, human reproduction, and tumor immunity.  相似文献   

11.
Killer Ig-like receptors (KIR) are commonly found on human NK cells, gammadelta T cells, and CD8 T cells. Although KIR(+) CD4 T cells are found in certain patients, their prevalence in healthy donors is controversial. We now provide definitive proof that such cells are present in most individuals, and report on their frequency, surface phenotype, cytokine profile, and Ag specificity. The number of KIR(+) CD4 T cells detected in peripheral blood increased with age. In contrast with regular KIR(-) CD4 T cells, the majority of KIR(+) CD4 T cells lacked surface expression of CD27, CD28, CCR4, and CCR7, but did express CD57 and 2B4. In addition, KIR were detected on approximately one-tenth of CD28(-) and CD57(+) memory CD4 T cells. In line with the absence of the Th2 marker CCR4, the KIR(+) CD4 cells produced mainly IFN-gamma and little IL-4, IL-10, or IL-17 upon TCR triggering. Furthermore, the KIR(+) population contained cells that responded to recall Ags in an HLA class II-restricted fashion. Together, our data indicate that KIR-expressing CD4 T cells are predominantly HLA class II-restricted effector memory Th1 cells, and that a significant, previously unrecognized fraction of effector memory Th1 cells expresses KIR.  相似文献   

12.
Natural killer (NK) cells express killer cell inhibitory receptors (KIRs) that recognize polymorphic class I MHC molecules. In the present study, we analyze the modulatory effect of IL-2 alone or a combination of IL-12 with IL-18 on surface expression of killer cell immunoglobulin-like receptors KIR2DL1, KIR2DL2, and KIR3DL2 in NK cells. Thus, it was found that IL-2 causes a significant increase in the proportion of cells with given studied receptors. Stimulation by a mixture of IL-12 and IL-18 caused significant increase in the fraction of cells with the KIR2DL1 and KIR2DL2, however no significant change in the percentage of cells with KIR3DL2 receptor on their surface was observed. The results of the study show the presence of KIRs on both resting and activated NK cells, this may suggest that KIRs have also an important role in the regulatory processes after activation of this subpopulation of cells.  相似文献   

13.
KIR3DL1 is a highly polymorphic killer cell Ig-like receptor gene with at least 23 alleles described, including its activating counterpart, KIR3DS1. Recently, the KIR3DS1 allele has been shown to slow progression to AIDS in individuals expressing HLA-Bw4 with isoleucine at position 80. However, due to the lack of a specific Ab, KIR3DS1 expression and function is not well characterized. In this study, we demonstrate KIR3DS1 expression on a substantial subset of peripheral natural killer cells through its recognition by the mAb Z27. The fidelity of this detection method was confirmed by analysis of KIR3DS1 transfectants and the identification of a novel KIR3DS1 null allele. Interestingly, KIR3DS1 is also expressed by a small proportion of CD56(+) T cells. We show that ligation of KIR3DS1 by Z27 leads to NK cell IFN-gamma production and degranulation as assessed by expression of CD107a. Furthermore, we document the persistence of KIR3DS1(+) NK cells in HIV-1 viremic patients. The high frequency of KIR3DS1 expression, along with its ability to activate NK cells, and its maintenance during HIV-1 viremia are consistent with the epidemiological data suggesting a critical role for this receptor in controlling HIV-1 pathogenesis.  相似文献   

14.
We report the supramolecular organization of killer Ig–like receptor (KIR) phosphorylation using a technique applicable to imaging phosphorylation of any green fluorescent protein–tagged receptor at an intercellular contact or immune synapse. Specifically, we use fluorescence lifetime imaging (FLIM) to report Förster resonance energy transfer (FRET) between GFP-tagged KIR2DL1 and a Cy3-tagged generic anti-phosphotyrosine monoclonal antibody. Visualization of KIR phosphorylation in natural killer (NK) cells contacting target cells expressing cognate major histocompatibility complex class I proteins revealed that inhibitory signaling is spatially restricted to the immune synapse. This explains how NK cells respond appropriately when simultaneously surveying susceptible and resistant target cells. More surprising, phosphorylated KIR was confined to microclusters within the aggregate of KIR, contrary to an expected homogeneous distribution of KIR signaling across the immune synapse. Also, yellow fluorescent protein–tagged Lck, a kinase important for KIR phosphorylation, accumulated in a multifocal distribution at inhibitory synapses. Spatial confinement of receptor phosphorylation within the immune synapse may be critical to how activating and inhibitory signals are integrated in NK cells.  相似文献   

15.
16.
Carriage of the natural killer (NK) receptor genotype KIR3DL1*h/*y with its HLA-B*57 ligand (*h/*y+B*57) is associated with slow time to AIDS and low viral load (VL). To provide a functional basis for these epidemiological observations, we assessed whether HIV-1-infected slow progressors (SP) carrying the *h/*y+B*57 compound genotype would have increased NK cell polyfunctional potential in comparison to SP with other killer immunoglobulin-like receptor (KIR)/HLA compound genotypes and whether this enhanced polyfunctionality was dependent upon the coexpression of both KIR3DL1*h/*y and HLA-B*57. The functional potential of NK cells was investigated by stimulating peripheral blood mononuclear cells with HLA-devoid targets or single HLA transfectants. Multiparametric flow cytometry was used to detect NK cells with seven functional profiles representing all permutations of CD107a expression and gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) secretion. NK cells from individuals carrying KIR3DL1 receptor-HLA-Bw4 ligand pairs had greater trifunctional responses than those from KIR3DL1 homozygotes (hmz), who were Bw6 homozygotes. NK cells from subjects carrying the *h/*y+B*57 genotypes exhibited the highest trifunctional potential, and this was dependent on cocarriage of the NK receptor and its ligand. Trifunctional cells secreted more of each function tested on a per-cell basis than each corresponding monofunctional NK subset. Although VL influenced NK functionality, individuals with defined KIR/HLA genotypes exhibited differences in NK cell polyfunctionality that could not be accounted for by VL alone. The protective effect of HLA-B*57 on slow progression to AIDS and low VL may be mediated through its interaction with KIR3DL1 alleles to educate NK cells for potent activity upon stimulation.  相似文献   

17.
Killer cell Ig-like receptor (KIR)2DL4 (2DL4, CD158d) was previously described as the only KIR expressed by every human NK cell. It is also structurally atypical among KIRs because it possesses a basic transmembrane residue, which is characteristic of many activating receptors, but also contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). We expressed epitope-tagged 2DL4 in an NK-like cell line to study receptor function. Three distinct 2DL4 cDNA clones were analyzed: one encoding the "conventional" 2DL4 with the cytoplasmic ITIM (2DL4.1) and two encoding different cytoplasmic truncated forms lacking the ITIM (2DL4.2 and 2DL4(*)). Surprisingly, one truncated receptor (2DL4.2), which is the product of a prevalent human 2DL4 allele, was not expressed on the cell surface, indicating that some individuals may lack functional 2DL4 protein expression. Conversely, both 2DL4.1 and 2DL4(*) were expressed on the cell surface and up-regulated by IL-2. Analysis of primary NK cells with anti-2DL4 mAb confirmed the lack of surface expression in a donor with the 2DL4.2 genotype. Donors with the 2DL4.1 genotype occasionally expressed receptor only on CD56(high) NK cells, although their expression was up-regulated by IL-2. Interestingly, Ab engagement of epitope-tagged 2DL4 triggered rapid and robust IFN-gamma production, but weak redirected cytotoxicity in an NK-like cell line, which was the opposite pattern to that observed upon engagement of another NK cell activating receptor, NKp44. Importantly, both 2DL4.1 and 2DL4(*) exhibited similar activation potential, indicating that the ITIM does not influence 2DL4.1 activating function. The unique activation properties of 2DL4 suggest linkage to a distinct signaling pathway.  相似文献   

18.
Killer cell Ig-like receptor (KIR) and CD94:NKG2A molecules were first defined as human NK cell receptors (NKR), but now are known to be expressed and to function on subpopulations of T cells. Here the repertoires of KIR and CD94:NKG2A expression by T cells from two donors were examined and compared with their previously defined NK cell repertoires. T cell clones generated from peripheral blood of both donors expressed multiple NKR in different combinations and used the range of receptors expressed by NK cells. In both donors alpha beta T cells less frequently expressed the inhibitory receptors CD94:NKG2A and KIR2DL1 than either gamma delta T cells or NK cells. In contrast to NK cells, not all NKR(+) T cells expressed an inhibitory receptor for autologous HLA class I. This lack of specific inhibitory NKR was especially apparent on alpha beta T cells of one donor. Overall, alpha beta T cells exhibited a distinct pattern of NKR expression different from that of gamma delta T and NK cells, which expressed highly similar NKR repertoires. In one donor, analysis of TCR rearrangement revealed a dominant subset of NKR(+) T cells sharing identical TCR alpha- and beta-chains. Remarkably, among 55 T cell clones sharing the same TCR alpha beta rearrangement 18 different KIR phenotypes were seen, suggesting that KIR expression was initiated subsequently to TCR rearrangement.  相似文献   

19.
Loss of IFN-gamma production by invariant NK T cells in advanced cancer   总被引:10,自引:0,他引:10  
Invariant NK T cells express certain NK cell receptors and an invariant TCRalpha chain specific for the MHC class I-like CD1d protein. These invariant NK T cells can regulate diverse immune responses in mice, including antitumor responses, through mechanisms including rapid production of IL-4 and IFN-gamma, but their physiological functions remain uncertain. Invariant NK T cells were markedly decreased in peripheral blood from advanced prostate cancer patients, and their ex vivo expansion with a CD1d-presented lipid Ag (alpha-galactosylceramide) was diminished compared with healthy donors. Invariant NK T cells from healthy donors produced high levels of both IFN-gamma and IL-4. In contrast, whereas invariant NK T cells from prostate cancer patients also produced IL-4, they had diminished IFN-gamma production and a striking decrease in their IFN-gamma:IL-4 ratio. The IFN-gamma deficit was specific to the invariant NK T cells, as bulk T cells from prostate cancer patients produced normal levels of IFN-gamma and IL-4. These findings support an immunoregulatory function for invariant NK T cells in humans mediated by differential production of Th1 vs Th2 cytokines. They further indicate that antitumor responses may be suppressed by the marked Th2 bias of invariant NK T cells in advanced cancer patients.  相似文献   

20.
Muramyl dipeptide (MDP) is a bacterial pathogen associated molecular pattern derived from both Gram-positive and -negative bacteria. It is a specific ligand for nuclear oligomerization domain 2, a pattern recognition receptor best characterized for its role in immunosurveillance in the gut. In this study, we demonstrate that human peripheral blood NK cells express nuclear oligomerization domain 2 and respond to MDP. NK cells naturally internalize MDP leading to direct cell activation, including signaling through NFkappaB: characterized by p50/p65 heterodimers at early stimulations times and sustained activation of p50 homodimers. Moreover, MDP synergizes with IFN-alpha and IL-12 to activate NK cells and stimulate IFN-gamma secretion, suggesting a role for accessory cells in induction of an optimal NK cell response. Although IL-12 costimulation leads to a greater IFN-gamma response by NK cells, higher levels of CD69 in response to MDP are induced in the presence of IFN-alpha, suggesting that different pathogen-induced cytokine profiles will affect downstream NK cell responses. In contrast, MDP alone or in combination with either IFN-alpha or IL-12 only poorly increases NK cell cytotoxicity. In summary, this report identifies MDP as a bacterial pathogen associated molecular pattern that activates human NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号