首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Observations are reported on akinete formation, sheath formation and the breaking away of the rest of the trichome after akinete formation in Gloeotrichia ghosei R. N. Singh.  相似文献   

3.
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction.  相似文献   

4.
The effect of the organophosphorus insecticide Ekalux Ec-25 (quinalphos) was studied on akinete germination, and sporulation of the green algaPithophora kewensis (Cladophorales). Initiation of akinete germination was delayed by 1–3 d with 0.025–0.1% concentrations of the pesticide used. The percentage of akinete germination was found to be markedly affected by the treatment with insecticide, except with the concentration of 0.25% Ekalux Ec-25, where percent germination was observed to be higher than in the control. Generally, the time taken for the initiation of akinete formation increased and percent sporulation decreased with the increase of concentrations from 0.025 to 0.1% of Ekalux Ec-25.  相似文献   

5.
The mere vegetative survival was not sufficient but suitable growth conditions were required for akinete formation to occur in the blue-green algaeAnabœna iyengarii, Westiellopsis prolifica, Nostochopsis lobatus and in the green algaPithophora oedogonia. In all algae, akinetes were neither formed nor germinated in darkness, and while dim light of 300 lx was sufficient for most of akinetes to germinate and also to maintain vegetative survival, it was not adequate for optinum akinete formation. Although akinetes of all algae could germinate at 35°C, both the vegetative survival and akinete formation were markedly suppressed at this temperature. Heat or UV shock of any level, whether ineffective or effecting vegetative survival, did not promote akinete formation or germination in any alga tested. Akinetes of all algae under study were relatively tolerant to heat and also to some extent to UV. Both wet and dried akinetes of all algae were equally UV tolerant. In all algae, the viability of both wet and dried akinetes decreased more or less equally with storage time, but the decrease was more drastic when storage temperature was progressively lowered from 20 to 0°C. Hence the akinetes can tolerate dryness but not frost.  相似文献   

6.
Summary Anabaenopsis Raciborskii Wolosz. has been described in detail with special reference to its morphological variants, which sometimes appear similar to Raphidiopsis indica Singh and Cylindrospermum species. The variants have been shown to be seasonal in distribution. Details of heterocyst and akinete formation have been followed.  相似文献   

7.
Differentiation of akinetes was investigated in the filamentous cyanobacterium Anabaena azollae Stras. In this organism all pre-existing vegetative cells are capable of developing into akinetes. Standard sporulation medium (SSM) was used to synchronously induce the formation of akinetes, while cultures in Allen and Arnon (AA/8) medium were used as controls.This paper describes the changes in photosynthetic pigments and total soluble proteins in these cultures over a 25-day period encompassing akinete differentiation. Heterocyst frequencies and nitrogenase activity were also monitored during the same period in both media. SDS-PAGE results indicated that specific proteins were synthesized in a manner correlated with akinete differentiation. The results demonstrate that in cultures undergoing akinete development, some of the photosynthetic pigments are maintained, nitrogen-fixation and heterocyst differentiation are suppressed, and the cells synthesize a variety of specific proteins.  相似文献   

8.
The effects of temperature, light intensity and nutrient depletion on akinete formation in seven strains of planktonic Anabaena spp.: A. mucosa TAC426; A. crassa TAC436; A. spiroides TAC443 and TAC444; A. flosaquae TAC446; and A. ucrainica TAC448 and TAC449 were examined. A Marked Pfft of temperature on akinete formation was observed at 40 μmol photons·m?2·sec?1 and nutrient-sufficient conditions. At 20° C, akinetes did not develop in A. mucosa TAC426, A. crassa TAC436, A. spiroides TAC443, A. flos-aquae TAC446, or A. ucrainica TAC449 but were formed at frequencies of a little over 11% (ratio of filaments with akinetes to total filaments) in A. spiroides TAC444 and A. ucrainica TAC448. None of the strains fmd akinetes or heterocysts at 30° C and 35° C. At lower temperature (10° C and 15° C), akinetes developed in all the strains at maximum frequencies of 13.4–77.4% during the late exponential phase or late exponential to stationary phases of growth. With only one exception, low light or nutrient deletion did not lead to the induction of akinete diferentiation at 20° C. Only akinete formation in A. flosaquae TAC446 was induced by nitrogen deletion with a frequency of 12.1%, similar to that induced by low temperature, but the initiation of akinete formation in the strain was delayed compared to treatment with low temperature. These results show that temperature was the most important environmental factor triggering akinete formation in these species. In A. crassa TAC436 and A. spiroides TAC443 and TAC444, akinetes developed during the late exponential growth phase even though heterocysts were formed at a 100% frequency (ratio of filaments with heterocysts to total filaments) throughout the entire growth phase. In A. mucosa TAC426, A. flos-aquae TAC446, and A. ucrainica TAC448 and TAC449, there was a positive correlation between heterocyst and akinete formation, suggesting that the presence of a heterocyst may play a role in akinete formation.  相似文献   

9.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

10.
Tribonema bombycinum (Xanthophyceae), was examined. T. bombycinum shifted from vegetative cells to akinetes with starving by a prolonged batch culture, by culture with a diluted medium, or by culture with a single nutrient-deficient medium. In addition, akinetes developed by desiccation, but cold treatment at 4 C did not facilitate akinete formation. During starving, the vegetative cells, which had a large central vacuole in the protoplasm and thin cell walls, finally changed to akinetes, which had many small vacuoles and oil droplets in the protoplasm and thick cell walls. During akinete formation by starving, the freezing tolerance (LT50) increased gradually from −3 C in vegetative cells to far below −30 C in akinetes. When vegetative cells were subjected to equilibrium freezing, their size shrank greatly and aparticulate domains accompanied by fracture-jump lesions developed in the plasma membranes. Akinetes subjected to equilibrium freezing showed little shrinkage, and freezing-induced ultrastructural changes did not occur in the plasma membranes. The morphological changes in the process of akinete formation and the responses to equilibrium freezing resembled those of cold-acclimated terrestrial plants. Received 24 November 1998/ Accepted in revised form 1 February 1999  相似文献   

11.
Anabaena torulosa is unable to fix N2 and to differentiate akinetes in a P-deficient nitrate-free medium. In a P-deficient medium with nitrate, the NO3 ? assimilation and period of akinete differentiation are of the same order of magnitude as in a P-containing nitrate medium. It is suggested that regulation of akinete differentiation in P-deficient organism proceeds through the regulation of the N-assimilating system. At the time of akinete differentiation, cellular P is excreted into the medium which leads to a decrease of cellular P.  相似文献   

12.
Karlsson  I. 《Hydrobiologia》2003,506(1-3):189-193
Hydrobiologia - Gloeotrichia echinulata is an akinete forming cyanobacterium with both a pelagic and a benthic phase. After germination of the akinete there is a short phase of growth on the...  相似文献   

13.
Electronmicroscopical investigations of light activated akinetes in different phases before outgrowth of the germinating cell showed two alterations in the akinete envelope, obviously in connection with the germination process. After induction of germination the akinetes show formation of an expanding more or less electron dense layer between the outer cell wall layer (outer membrane, LIV) and the condensed part of the akinete coat (the transformed sheath of the vegetative cell). Between this new formed layer and the mentioned part of the akinete coat thick laminar layers are deposited which contain alternately electron dense and electron transparent strata. The expanding layer is assumed to be a mucous layer which acts as swelling body causing, after bursting of the layered shell, the expulsion of the germinating cell in the manner characteristic for Anabaena variabilis.  相似文献   

14.
1. Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium which can produce akinetes (reproductive spores) that on germinating can contribute to future populations. To further understand factors controlling the formation of these specialised cells, the effects of diurnal temperature fluctuations (magnitude and frequency), in combination with different light intensities and phosphorus concentrations were investigated under laboratory conditions. 2. Akinete differentiation was affected by the frequency of temperature fluctuations. Maximum akinete concentrations were observed in cultures that experienced multiple diurnal temperature fluctuations. 3. Akinete concentrations increased with increasing magnitude of temperature fluctuation. A maximum akinete concentration was achieved under multiple diurnal temperature fluctuations with a magnitude of 10 °C (25 °C to 15 °C). 4. A fourfold increase in light intensity (25–100 μmol m?2 s?1) resulted in an approximate 14‐fold increase in akinete concentration. 5. High filterable reactive phosphorus (FRP) concentrations (>70 μg L?1) in the medium, combined with a multiple diurnal temperature fluctuation of 10 °C, supported the development of the highest akinete concentration.  相似文献   

15.
Physiological control of akinete formation and subsequent germination is likely to be important in understanding and predicting how natural populations of cyanobacteria respond to their environment. While previous research has indicated nutrient limitation may be important in akinete formation new results presented here indicate that in the toxic and bloom-forming species Anabaena circinalis there was a profound effect of spectral quality. Under 40 μmol photons m?2 s?1 photosynthetically active irradiance (PAR) of predominately red irradiance akinete production was maximal at 2.1 × 10?4 akinetes vegetative cell?1 d?1, some 3000 times greater than the 6.5 × 10?8 akinetes vegetative cell?1 d?1 observed under equivalent PAR but predominately blue light. For cells grown under a range of predominantly red, white and green irradiance even short exposures to blue light reduced akinete formation rates by a factor of ten relative to controls, indicating that exposure to blue light inhibits akinete formation. Germination of akinetes was not influenced by the irradiance under which akinetes were formed: 88 ± 4.1% (mean ± 1 S.D.) of akinetes germinated with no evidence of an effect on germination success due to their production under predominately red, white or green irradiance (germination of akinetes produced under blue light was not tested). Spectral quality had a significant impact on both vegetative cell and germling growth rates. The results indicate a significant reduction in the cellular differentiation of A. circinalis vegetative cells into akinetes that is mediated by blue light. In an ecological context the production of akinetes will be greater in environments with less blue light; potentially including those with slower flow, more stratification, less vertical mixing and more turbidity. The resulting spatial pattern of akinete production is likely to influence the location of akinetes in sediments and the development of subsequent blooms from excysting germlings.  相似文献   

16.
The differentiation of akinetes inScytonema fritschii occurred adjacent to the newly developed heterocysts in late exponential phase. The filaments exhibited cell division leading to the formation of heterocysts, interspersed by the potential akinetes which could be identified by the accumulation of a large number of granules. Upon maturity, the akinetes acquired thick envelopes and were seen in elongated series interrupted by dead necridia which resulted from crumpling of the newly developed heterocysts. The formation of akinetes was accompanied by a change in color of cultures from blue-green to brown. Of the inorganic nitrogen sources tested, ammonium nitrate supported the formation of maximum percentage of akinetes. The incorporation of 7-azatryptophan and rifampicin in nitrate-free and nitrogen sources resulted in the production of heterocysts at a very high frequency in the late-exponential phase coinciding with akinete formation but the frequency of the latter was reduced. The activity of nitrogenase, nitrate reductase and glutamate-ammonia ligase was absent in mature akinetes. The absorption spectra of chlorophylla and phycobiliproteins revealed the presence of negligible amounts of the former white the latter were absent. The dry mass steadily increased during akinete differentiation with a concomitant decrease in C/N ratios.  相似文献   

17.
Summary Akinete formation and germination were studied in a species of Cylindrospermum using the electron microscope. The differentiation of a vegetative cell into an akinete is characterized by cell enlargement, sheath condensation, deposition of several spore envelope layers, including a dense fibrillar layer and deposition of large cyanophycin granules. The mature akinete in addition to the multilayered envelope retains internally a large number of cyanophycin granules, a photosynthetic thylakoid system, polyhedral bodies, lipid deposits and nucleoplasmic regions. Germination of the akinete can take place in several modes differing in detail. Most frequently the spore envelope remains intact and the germling which may or may not have divided emerges through a pore at one end of the envelope. The photosynthetic thylakoid system appears to increase by the fusion of small vesicles found in the cytoplasm. Alpha-granules are numerous and cyanophycin is nearly absent in the germling.  相似文献   

18.
Nodularia spumigena, like many cyanobacteria, produces specialised reproductive structures, known as akinetes, which are believed to allow survival under unfavourable conditions. This study investigated the effects of salinity, nitrogen and phosphorus concentration at two irradiances on akinete differentiation in a N. spumigena isolate from the Gippsland Lakes, Victoria, Australia. A computer image analysis program was used to photograph filaments and assess production of akinetes over time in separate experiments for each environmental parameter. Heterocyst production and cell morphology were also examined. The results suggest that akinete production increases over time. Production of akinetes is further increased at low and high salinities and with the addition of nitrate. Higher irradiance increases akinete differentiation, although in combination with different phosphorus concentrations causes varied effects. The development and sedimentation of akinetes may provide an inoculum for reoccurring blooms. Heterocysts were only observed during experiments with varying salinity and nitrogen exposures. Light quantity appeared to play a large role in heterocyst production. The ability of N. spumigena to produce akinetes and heterocysts is likely to be part of the reason for its success and continual occurrence in estuarine environments low in nitrogen, such as the Gippsland Lakes, Victoria, Australia. Factors known to reduce heterocyst and akinete production will provide new insight to possible management controls for this species.  相似文献   

19.
Almost all dried vegetative trichomes ofAnabaena iyengarii, Westiellopsis prolifica andNostochopsis lobatus died within 1 h, while those ofOscillatoria acuminata retained viability to some extent for 1 d under similar storage conditions. The viability of dried vegetative trichomes ofO. acuminata decreased about equally on storage at 20 degrees C in the light or in the dark, but dropped rapidly at 12 and 0 degrees C in the dark. Vegetative trichomes ofA. iyengarii, N. lobatus andW. prolifica were more sensitive to frost than those ofO. acuminata, and this correlated with their low resistance to desiccation because both types of exposure involved osmotic stress. Both dried and wet akinetes ofA. iyengarii, W. prolifica andN. lobatus were about equally viable when stored at 20 degrees C in the light or the dark or at 12 and 0 degrees C in the dark, but their germination ability decreased on storage at 0 degrees C. The water stress imposed on growing vegetative trichomes either in high-agar media or in NaCl-supplemented liquid media reduced the survival ofO. acuminata trichomes, decreased or totally suppressed akinete and heterocyst formation and akinete germination inA. iyengarii, W. prolifica andN. lobatus. The sensitivity decreased in the sequenceA. iyengarii 相似文献   

20.
Amphibians can regenerate missing body parts, including limbs. The regulation of collagen has been considered to be important in limb regeneration. Collagen deposition is suppressed during limb regeneration, so we investigated collagen deposition and apical epithelial cap (AEC) formation during axolotl limb regeneration. The accessory limb model (ALM) has been developed as an alternative model for studying limb regeneration. Using this model, we investigated the relationship between nerves, epidermis, and collagen deposition. We found that Sp-9, an AEC marker gene, was upregulated by direct interaction between nerves and epidermis. However, collagen deposition hindered this interaction, and resulted in the failure of limb regeneration. During wound healing, an increase in deposition of collagen caused a decrease in the blastema induction rate in ALM. Wound healing and limb regeneration are alternate processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号