首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sabin3 mutation in the viral RNA plays an important role in directing attenuation phenotype of Sabin vaccine strain of poliovirus type 1 (PV1). We previously described that Sabin3-like mutation introduced in Coxsackievirus B3 (CVB3) genome led to a defective mutant. However, this mutation do not led to destruction of secondary structure motif C within the stem-loop V of CVB3 RNA because of the presence of one nucleotide difference (C → U) in the region encompassing the Sabin3 mutation at nucleotides 471 of PV1 and 475 of CVB3 RNA. In order to reproduce the same sequence of PV1 sabin3 vaccine strain, we introduce in this study an additional mutation (U475 → C) to CVB3 Sabin3-like mutant. Our results demonstrated that Sabin3-like+C mutant displayed a decreased translation initiation defects when translated in cell-free system. This translation initiation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with Sabin3-like mutant and wild-type CVB3 viruses. Inoculation of Swiss mice with mutant viruses resulted in no inflammatory heart disease when compared to heart of mice infected with wild-type. Theses findings indicate that the double mutant could be exploited for the development of a live attenuated vaccine against CVB3.  相似文献   

2.
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5′ untranslated region (5′UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA–protein and RNA–RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5′ and 3′UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.  相似文献   

3.
Coxsackievirus B3 (CVB3) infections can cause myocarditis in humans and are implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, cardiovirulence determinants have been identified in the CVB3 5' nontranslated region (5'NTR) and capsid. The myocarditic phenotypes of two CVB3 clinical isolates were determined using an established murine model of inflammatory heart disease. The 5'NTRs and capsid proteins of the noncardiovirulent CVB3/CO strain and cardiovirulent CVB3/AS strain were examined to determine their influence on the cardiovirulence phenotype. Six intratypic chimeric viruses were constructed in which 5'NTR and capsid sequences of the infectious cDNA copy of the cardiovirulent CVB3/20 genome were replaced by homologous sequences from CVB3/CO or CVB3/AS. Chimeric strains were tested for cardiovirulence by inoculation of C3H/HeJ mice. Sections of hearts removed at 10 days postinoculation were examined for evidence of myocarditis by light microscopy and assayed for the presence of virus. Replacement of the CVB3/20 capsid coding region by that from the homologous region of CVB3/CO resulted in no change in the cardiovirulent CVB3/20 phenotype, with virus recoverable from the heart at 10 days postinoculation. However, recombinant virus containing the CVB3/CO 5'NTR alone or the 5'NTR and capsid sequences together were not myocarditic, and infectious virus was not recovered from the myocardium. Chimeric viruses containing the CVB3/AS 5'NTR alone, capsid sequence alone, or both together preserved the myocarditic phenotype. These data support the 5'NTR as the primary site in the determination of the natural cardiovirulence phenotype of CVB3.  相似文献   

4.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA. The genomic RNA has a tRNA-like structure (TLS) at the 3′-end. The 3′-TLS and hairpins in the 5′-untranslated region supposedly serve as packaging signals; however, recent studies have shown that they do not play a role in TYMV RNA packaging. In this study, we focused on packaging signals by examining a series of deletion mutants of TYMV. Analysis of encapsidated viral RNA after agroinfiltration of the deletion constructs into Nicotiana benthamiana showed that the mutant RNA lacking the protease (Pro)/helicase (Hel) region was not encapsidated by the coat proteins provided in trans, implicating that a packaging signal lies in the Pro/Hel region. Examination of two ProHel mutants showed that protein activity from the Pro/Hel domains was dispensable for the packaging of the non-replicating TYMV RNA. In contrast, the mutant TYMV RNA lacking the Pro/Hel region was efficiently encapsidated when the mutant TYMV was co-introduced with a wild-type TYMV, suggesting that packaging mechanisms might differ depending on whether the virus is replicating or not.  相似文献   

5.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

6.
Du Z  Yu J  Andino R  James TL 《Biochemistry》2003,42(15):4373-4383
Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on three most frequently occurring families of tetraloop sequences, namely, the cUNCGg, the cGNRAg, and the gCUUGc sequences. Our knowledge surely is not exhaustive, and efforts are still being made to gain a better understanding. Here we report the NMR structure of a uCACGg tetraloop that occurs naturally within the cloverleaf RNA structure of the 5'-UTR of coxsackievirus B3. This tetraloop is the major determinant for interaction between the cloverleaf RNA and viral 3C protease, which is an essential part of a ribonucleoprotein complex that plays a critical role in the regulation of viral translation and replication. Our structure shows that the CACG tetraloop is closed by a wobble U.G base pair. The structure of the CACG tetraloop is stabilized by extensive base stacking and hydrogen bonding interactions strikingly similar to those previously reported for the cUUCGg tetraloop. Identification of these hallmark structural features strongly supports the existence of an extended YNCG tetraloop family. The U.G base pair closing the stem and the A residue in the loop introduce some small structural and themodynamic distinctions from the canonical cUUCGg tetraloop that may be important for recognition by the viral 3C protease.  相似文献   

7.
The lengthy 5' nontranslated region of coxsackievirus B3 (CVB3) forms a highly ordered secondary structure containing an internal ribosome entry segment (IRES), which plays an important role in controlling viral translation and pathogenesis. The stem-loop V (SL-V) of this IRES contains a large lateral bulge loop which encompasses two conserved GNRA motifs. In this study, we analyzed the effects of point mutations within the GNRA motifs of the CVB3 IRES. We characterized in vitro virus production and translation efficiency and we tested in vivo virulence of two CVB3 mutants produced by site-directed mutagenesis. The GNAA1 and GNAA2 RNAs displayed decreased translation initiation efficiency when translated in rabbit reticulocyte lysates. This translation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with the wild type. When inoculated orally into Swiss mice, both mutant viruses were avirulent and caused neither inflammation nor necrosis in hearts. These results highlight the important role of the GNRA motifs within the SL-V of the IRES of CVB3, in directing translation initiation.  相似文献   

8.
Replication fidelity of RNA virus genomes is constrained by the opposing necessities of generating sufficient diversity for adaptation and maintaining genetic stability, but it is unclear how the largest viral RNA genomes have evolved and are maintained under these constraints. A coronavirus (CoV) nonstructural protein, nsp14, contains conserved active-site motifs of cellular exonucleases, including DNA proofreading enzymes, and the severe acute respiratory syndrome CoV (SARS-CoV) nsp14 has 3'-to-5' exoribonuclease (ExoN) activity in vitro. Here, we show that nsp14 ExoN remarkably increases replication fidelity of the CoV murine hepatitis virus (MHV). Replacement of conserved MHV ExoN active-site residues with alanines resulted in viable mutant viruses with growth and RNA synthesis defects that during passage accumulated 15-fold more mutations than wild-type virus without changes in growth fitness. The estimated mutation rate for ExoN mutants was similar to that reported for other RNA viruses, whereas that of wild-type MHV was less than the established rates for RNA viruses in general, suggesting that CoVs with intact ExoN replicate with unusually high fidelity. Our results indicate that nsp14 ExoN plays a critical role in prevention or repair of nucleotide incorporation errors during genome replication. The established mutants are unique tools to test the hypothesis that high replication fidelity is required for the evolution and stability of large RNA genomes.  相似文献   

9.
To determine whether interferon gamma (IFN-γ) can be used as a biomarker of exposure to viral pathogens, 12-week-old BALB/c mice were injected intraperitoneally with coxsackievirus B3 (CVB3) or coxsackievirus B4 (CVB4) diluted in sterilized phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infection, mouse spleen cells were harvested and assayed for the release of IFN-γ by memory T cells after in vitro stimulation with viral antigens, phytohemagglutinin (PHA), and PBS, respectively. The level of IFN-γ was examined by an antibody-capture enzyme-linked immunosorbent assay (ELISA). A marked increase in the level of IFN-γ was observed when memory T cells from CVB3-infected mice were incubated with CVB3 virus, but not with CVB4 or PBS. Conversely, memory T cells from mice infected by CVB4 were not stimulated to produce IFN-γ when they were incubated with CVB3 and PBS, but did significantly produce IFN-γ when stimulated with CVB4. T cells from mice injected with PBS did not release IFN-γ after stimulation with CVB3 or CVB4. However, these T cells did release IFN-γ after stimulation with PHA. Our results demonstrated that IFN-γ produced by memory T cells is virus-specific and may have use as a biomarker in viral exposure studies. The results of this study may be extended to the study of infection by pathogens that are capable of inducing cell-mediated immune response in humans. Disclaimer: The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication.  相似文献   

10.
Dimerization of retroviral genomic RNA is essential for efficient viral replication and is mediated by structural interactions between identical RNA motifs in the viral leader region. We have visualized, by electron microscopy, RNA dimers formed from the leader region of the prototype lentivirus, maedi visna virus. Characterization by in vitro assays of the domains responsible for this interaction has identified a 20 nucleotide sequence that functions as the core dimerization initiation site. This region is predicted to form a GACG tetraloop and therefore differs significantly from the kissing loop palindromes utilized to initiate dimerization in primate lentiviruses. The motif is strongly conserved across the ovine and caprine lentiviruses, implying a critical functional role. Furthermore, the proposed GACG tetraloop exhibits marked structural homology with similar structural motifs present in the leader regions of the alpha- and gamma-retroviruses, and the maedi visna virus dimer linkage region is capable of forming heterodimeric species with the Moloney murine leukemia virus Psi domain. This may be indicative of commonality of origin of the two viruses or convergent evolution.  相似文献   

11.
Ten antibody escape mutants of coxsackievirus B3 (CVB3) were used to identify nucleotide substitutions that determine viral virulence for the heart and pancreas. The P1 region, encoding the structural genes of each mutant, was sequenced to identify mutations associated with the lack of neutralization. Eight mutants were found to have a lysine-to arginine mutation in the puff region of VP2, while two had a glutamate-to-glycine substitution in the knob of VP3. Two mutants, EM1 and EM10, representing each of these mutations, were further analyzed, initially by determining their entire sequence. In addition to the mutations in P1, EM1 was found to have two mutations in the 3D polymerase, while EM10 had a mutation in stem-loop II of the 5' nontranslated region (5'NTR). The pathogenesis of the mutants relative to that of CVB3 strain RK [CVB3(RK)] then was examined in A/J mice. Both mutants were found to be less cardiotropic than the parental strain, with a 40-fold (EM1) or a 100- to 1,000-fold (EM10) reduction in viral titers in the heart relative to the titers of CVB3(RK). The mutations in VP2, VP3, and the 5'NTR were introduced independently into the RK infectious clone, and the phenotypes of the progeny viruses were determined. The results substantiated that the VP2 and VP3 mutations reduced cardiovirulence, while the 5'NTR mutation in EM10 was associated with a more virulent phenotype when expressed on its own. Stereographic imaging of the two mutations in the capsomer showed that they lie in close proximity on either side of a narrow cleft between the puff and the knob, forming a conformational epitope that is part of the putative binding site for coreceptor DAF.  相似文献   

12.
13.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose of the adenosine at position 4324 in eukaryotic 28 S rRNA. Ricin A-chain will also catalyze depurination in naked prokaryotic 16 S rRNA; the adenosine is at position 1014 in a GAGA tetraloop. The rRNA identity elements for recognition by ricin A-chain and for the catalysis of cleavage were examined using synthetic GAGA tetraloop oligoribonucleotides. The RNA designated wild-type, an oligoribonucleotide (19-mer) that approximates the structure of the ricin-sensitive site in 16 S rRNA, and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type tetraloop oligoribonucleotide the ricin A-chain-catalyzed reaction has a Km of 5.7 microM and a Kcat of 0.01 min-1. The toxin alpha-sarcin, which cleaves the phosphodiester bond on the 3' side of G4325 in 28 S rRNA, does not recognize the tetraloop RNA, although alpha-sarcin does affect a larger synthetic oligoribonucleotide that has a 17-nucleotide loop with a GAGA sequence; thus, there is a clear divergence in the identity elements for the two toxins. Mutants were constructed with all of the possible transitions and transversions of each nucleotide in the GAGA tetraloop; none was recognized by ricin A-chain. Thus, there is an absolute requirement for the integrity of the GAGA sequence in the tetraloop. The helical stem of the tetraloop oligoribonucleotide can be reduced to three base-pairs, indeed, to two base-pairs if the temperature is decreased, without affecting recognition; the nature of these base-pairs does not influence recognition or catalysis by ricin A-chain. If the tetraloop is opened so as to form a GAGA-containing hexaloop, recognition by ricin A-chain is lost. This suggests that during the elongation cycle, a GAGA tetraloop either exists or is formed in the putative 17-member single-stranded region of the ricin domain in 28 S rRNA and this bears on the mechanism of protein synthesis.  相似文献   

14.
Background: Coxsackievirus B3 (CVB3) causes myocarditis in the SWR (H2q) mouse model and persistence of CVB3 in myocardium disposes to the development of dilated cardiomyopathy. An attenuated strain of CVB3 has been isolated, sequenced and several candidate mutations for attenuation identified. Derivation of a revertant to cardiovirulence allows the significance of these mutations to be assessed.Objectives: To ascertain which candidate mutation(s) determine(s) the attenuated phenotype.Study design: A revertant to cardiovirulence was isolated following passage through severe combined immunodeficient disease (SCID) mouse heart. The 5′-non-translated region (NTR) and region coding for capsid proteins were sequenced and compared to the wildtype and attenuant.Results: There are five candidates for attenuation: (1) A–G at base 580 in the 5′-NTR; (2) A–T at base 690 in the 5′-NTR; (3) CG–GC at bases 1401/2 (Thr to Ser at amino acid 151 in VP2); (4) AA–GT at bases 2691/2 (Lys to Ser at amino acid 80 in VP1); (5) A–G at base 2916 (Asp to Gly at amino acid 155 in VP1). It was shown previously that mutations at 580, 690 and 2691/2 are not important in attenuation. Additionally, there are three novel mutations in the coding region of the revertant and one in the 5′-NTR which are unlikely to be relevant for attenuation as they are not present in the attenuant. Of nucleotide changes seen at 1401/2 and 2916 in the attenuant, only 2916 reverts to the wildtype sequence and so is a strong candidate for a determinant of attenuation.Conclusions: The A–G mutation at 2916 (Asp to Gly at amino acid 155 in VP1) is a strong candidate for attenuation. It is located at the top of the receptor binding cleft and mutation of the Asp to a Gly may destabilise the receptor binding site.  相似文献   

15.
Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.  相似文献   

16.
The genome of brome mosaic virus (BMV) is comprised of three (+) strand RNAs, each containing a similar, highly structured, 200 base long sequence at its 3' end. A 134 base subset of this sequence contains signals directing interaction of the viral RNA with BMV RNA replicase, ATP,CTP:tRNA nucleotidyl transferase and aminoacyl tRNA synthetase. A series of mutants containing deletions within this region, previously constructed and tested in vitro for the effect on replication and aminoacylation activities, has now been assayed in vitro for adenylation function and in vivo for ability to replicate in isolated protoplasts and whole plants. These tests indicate that features of viral RNA recognized by BMV replicase overlap those directing adenylation, but are distinct from those directing aminoacylation. Consequently, the lethality of a deletion preferentially inhibiting aminoacylation suggests that this function may have an essential role contributing to viral replication in vivo. An RNA3 mutant bearing a 20-base deletion yielding normal levels of aminoacylation and enhanced levels of replicase template activity and adenylation in vitro was able to replicate in protoplasts and plants; however, its accumulation in protoplasts was reduced relative to wild-type. This suggests that additional functions affecting the replication and accumulation of viral RNA reside in the conserved 3' sequence.  相似文献   

17.
Several temperature-sensitive mutants of the Rauscher strain of murine leukemia virus representing three distinct physiological groups have been further characterized. Genetic recombination between different pairs of these mutants has been demonstrated. Several representative genetic recombinants were isolated and shown to replicate equally well at the permissive (31 C) and nonpermissive (38 C) temperatures and to have serological characteristics of the wild-type parental virus. Alternative models for the mechanisms involved in recombination between type C RNA viruses are discussed.  相似文献   

18.
The 5’ non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5’ NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5’ NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment.  相似文献   

19.
RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs.  相似文献   

20.
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号