首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclei and microsomes were prepared from the livers of normal, phenobarbital (PB)-treated and beta-naphthoflavone (beta-NF)-treated rats, and the contents of several enzymes in both subcellular fractions were examined. In normal rats, the enzyme activities in the nuclear fraction were about one-third of those of microsomes on a phospholipid basis. The induction of some particular enzymes by the drugs was observed with nuclei as well as with microsomes. Cytochrome P-450 and NADPH-cytochrome c reductase were increased by PB treatment and cytochrome P-448 was induced by beta-NF treatment both in nuclei and in microsomes. The extents of inhibition of nuclear enzyme activities by the antibodies against corresponding microsomal enzymes were almost the same as those of the microsomal activities. It was concluded that a microsomal type electron transport system exists in rat liver nuclei, and that nuclear drug-oxidizing activities are inducible by PB or beta-NF as their microsomal counterparts are.  相似文献   

2.
Rat liver nuclei have 2 to 12% of the corresponding microsomal aryl hydrocarbon hydroxylase, aminopyrine and benzphetamine N-demethylase, NADPH-cytochrome c reductase, and epoxide hydrase activities. Nuclear membranes were prepared from isolated liver nuclei by a sucrose density centrifugation technique. A 2.5- to 10.2-fold increase in the specific enzyme activities was observed in nuclear membrane as compared to intact nuclei. Several properties of the rat liver nuclear membrane and microsomal epoxide hydrase have been compared. Nuclear epoxide hydrase was similar to the corresponding microsomal enzyme in being induced by phenobarbital whereas 3-methylcholanthrene did not produce any effects. Nuclear membrane and microsomal epoxide hydrase were inhibited to a similar degree by 1,1,1-trichloropropene oxide, cyclohexene oxide, an trans-stilbene oxide. The apparent Km value of nuclear membrane epoxide hydrase was 20 μm for benzo(a)pyrene 4,5-oxide, which is 5.5-fold lower than the corresponding microsomal Km value (112 μm). Nuclear membranes were prepared from isolated nuclei of rat kidney, lung, spleen, and heart by the DNase digestion method. Epoxide hydrase activity in intact nuclei was in the following order: kidney > lung ? spleen, or heart. Increases of 2.2- and 2.5-fold in specific epoxide hydrase activity were observed in kidney and lung when nuclear membranes were compared to intact nuclei. DMSO, dimethylsulfoxide  相似文献   

3.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

4.
P E Thomas  A Y Lu  D Ryan  S West  W Levin 《Life sciences》1974,15(8):1475-1483
A partially purified preparation of hepatic cytochrome P-448 from 3-methylcholanthrene treated rats was used to produce antisera in rabbits. Using both Ouchterlony double diffusion and quantitative immunoprecipitation analysis, this antisera was found to be more specific for cytochrome P-448 than for cytochrome P-450 from phenobarbital induced rats. The antisera did not form precipitin bands with the following rat liver microsomal proteins: cytochrome b5, NADH-cytochrome b5 reductase, NADPH-cytochrome c reductase or epoxide hydrase.  相似文献   

5.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

6.
This investigation confirms the presence of the inducible mixed function hydroxylase enzyme system in nuclear membranes. The cytochrome P-450 spectrum and demethylase activity, markers of the enzyme system, were used to define its localization to the outer membrane envelope. Intact BALB/c mouse liver nuclei isolated and purified in Mg++ sucrose media of low ionic strength gave CO-dithionite reduced difference spectra of cytochrome P-450 and P-448. Phenobarbital induced P-450 by 40% while the carcinogenic hydrocarbon, benzo [α] pyrene, induced P-448 twofold. A corresponding increase was also observed in the microsomes of the same tissue preparations. No microsomal contamination of nuclear preparations was found. Intact nuclei stripped of their outer membrane by 0.5% Triton X-100 treatment resulted in a striking absence of the P-450 which, however, was found to be present in isolated outer nuclear membranes.  相似文献   

7.
Antibodies prepared against purified cytochrome P-450 and P-448 from phenobarbital- and 3-methylcholanthrene-pretreated rats have been shown to recognize several forms of hepatic cytochrome P-450 (P. E. Thomas, A. Y. H. Lu, D. Ryan, S. B. West, J. Kawalek, and W. Levin, 1976, Mol. Pharmacol.12, 746–758). These antibodies have been made monospecific for a single form of cytochrome P-450 by immunoadsorption with partially purified solid-phase cytochrome P-450 from rats treated with a different inducer than that used for isolation of the antigen. Each monospecific antibody did not react with different forms of cytochrome P-450 present in the heterologous antigen preparation. These monospecific antibodies, covalently bound to Sepharose, were used to purify the antigens (catalytically inactive) from microsomes in a single step. The high specificity of these antibodies for a single form of cytochrome P-450 was used to quantitate two forms of cytochrome P-450 in rat liver microsomes by radial immunodiffusion. The percentage of the total cytochrome P-450 in microsomes that is represented by each of these two forms of cytochrome P-450 varied from 3 to 89% depending on the xenobiotic pretreatment of the rats.  相似文献   

8.
The autocatalytic destruction of cytochrome P-450 by the following six substrates has been investigated in vivo and in vitro with microsomal and purified, reconstituted rat liver enzymes: 2-isopropyl-4-pentenamide (AIA), 1-ethinylcyclopentanol, 17α-propadienyl-19-nortestosterone, fluroxene, 5,6-dichloro-1,2,3-benzothiadiazole (DCBT), and 1-aminobenzotriazole (ABT). Administration of the first three substrates to rats pretreated with either phenobarbital (Pb) or 3-methylcholanthrene (3-MC), or their incubation with hepatic microsomes from such rats, produced a larger decrease in cytochrome P-450 levels in the membranes from Pb- than 3-MC-treated rats. Comparable losses, however, were observed in microsomes from rats pretreated with both Pb and 3-MC when the last three agents were used. Similar experiments were carried out using the major cytochrome P-450 isozymes purified from liver microsomes of Pb- or 3-MC-treated rats. The Pb isozyme was inactivated during catalytic turnover of all six substrates while only three substrates (DCBT, ABT, and fluroxene) were found to inactivate the 3-MC isozyme. Oxygen consumption studies with purified enzymes have shown that AIA is not a measurable substrate for the 3-MC isozyme, a fact which explains its failure to inactivate this isozyme. Similar studies with the Pb isozyme establish that one enzyme molecule is inactivated for approximately every 230–320 AIA molecules processed by the enzyme.  相似文献   

9.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

10.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

11.
Intraperitoneal administration of chloroquine, primaquine and quinacrine to rats resulted in inhibition of the hepatic microsomal mixed-function oxidases. The N-demethylation of benzphetamine (cytochrome P-450) was inhibited by chloroquine only while the O-deethylation of ethoxyresorufin (cytochrome P-448) was inhibited by primaquine and quinacrine. When incubated with hepatic microsomes from phenobarbital-pretreated rats, chloroquine and primaquine, but not quinacrine, caused a concentration-dependent inhibition of benzphetamine N-demethylase activity. Incubation of hepatic microsomes from beta-naphthoflavone rats with primaquine and quinacrine, but not chloroquine, resulted in a concentration-dependent inhibition of the O-deethylation of ethoxyresorufin. These observations demonstrate that chloroquine and quinacrine are specific inhibitors of cytochromes P-450 and P-448, respectively.  相似文献   

12.
The application of hexachlorobenzene (HCB), pentachlorophenol (PCP) and 2,4,5-trichlorophenol (TCP) to female rats led to an induction of both the microsomal and the nuclear cytochrome P-450 system in the liver. The increase of th mixed-function hydroxylase activities examined (7-ethoxycoumarin deethylase, 7-ethoxyresorufin deethylase, NADPH-dependent cytochrome c reductase, aminopyrine demethylase, benzpyrene hydroxylase) did not correlate strictly with the cytochrome P-450 content. Depending on the inducers and the substrates used, the content and the activity of the cytochrome P-450 were essentially smaller in the nuclei than in the microsomes. It was striking that in the nuclei those activities (benzpyrene hydroxylase, 7-ethoxyresorufin deethylase, 7-ethoxycoumarin deethylase) were preferably induced which can be attributed to the methyl-cholanthrene-induced form of the cytochrome P-450 (cytochrome P-448). These results suggest, also in the light of findings of other authors, the induction of different species of cytochrome P-450 in the nuclei and microsomes.  相似文献   

13.
1. A comparison was made between rat hepatic and plant microsomal cytochrome P-450 and cytochrome P-450 linked enzymic activities. 2. The results show that, compared with plant microsomes, rat hepatic microsomal protein concentrations were 165-fold higher, and rat hepatic cytochrome P-450 concentration were 32-fold higher. 3. Rat hepatic Cytochrome P-450 linked enzyme activities were 1765-fold and 25-fold greater when compared with plant microsomes using aldrin and biphenyl as substrates, respectively. 4. Rats metabolised biphenyl to 2- and 4-hydroxybiphenyl, whereas plants produced only the latter metabolite. 5. Pretreatment of rats and plant tissues with biphenyl, Aroclor 1248 and the sodium salt of phenobarbital increased significantly the microsomal protein concentrations, and enzyme activities linked to cytochrome P-450. 6. Unlike rat microsomes, those of plants were unable to metabolise halosubstituted biphenyls at measurable rates.  相似文献   

14.
When rats were pretreated with 3-methylcholanthrene or β-naphthoflavone, hepatic nicotine oxidase activity per cytochrome P-448 molecule decreased, but the specific activity of the enzyme remained unchanged. After phenobarbital pretreatment, the specific activity of nicotine oxidase increased while the activity of the enzyme per cytochrome P-450 molecule decreased. α-Naphthoflavone selectively inhibited the activities of phenobarbital-induced nicotine oxidase and constitutive form(s) of the enzyme. These results show that phenobarbital-induced cytochrome P-450 and constitutive forms(s) of the enzyme may be active in hepatic nicotine oxidation.  相似文献   

15.
Induction of hepatic microsomal UDP-glucuronyltransferase activity toward various phenolic xenobiotics by 3-methylcholanthrene treatment of rats was observed, and the process of the induction was studied. We had previously purified a form of UDP-glucuronyltransferase (called GT-1) having a catalytic activity toward phenolic xenobiotics from liver microsomes of 3-methylcholanthrene-treated rats. The antibodies against GT-1 inhibited the enzyme activity toward those xenobiotics in liver microsomes, and bound to a single protein having a molecular weight of about 54,000 Da (same value as that of GT-1) among microsomal proteins on immunoblotting analysis. The amount of GT-1 protein in hepatic microsomes was found to be increased in close correspondence with the activity increase by 3-methylcholanthrene treatment, by immunoblotting analysis using an uninducible cytochrome P-450 reductase as a negative standard. It was shown by in vitro translation assays that the protein increase described above resulted from the enhancement of the level of translatable mRNA encoding for GT-1. Increases in the amount of the protein immunochemically corresponding to GT-1 in the microsomes from liver of phenobarbital-treated rats and from extrahepatic organs, such as kidney, small intestine, and lung, of phenobarbital- or 3-methylcholanthrene-treated rats were also observed.  相似文献   

16.
The electron spin resonance (esr) spectra of the low-spin form of hepatic microsomal cytochrome P-450 and of cytochrome P-450 isolated from Pseudomonas putida grown on d-camphor (P-450cam) were studied in order to gain an understanding of the sensitivity of the hemin iron to changes in buffer. The shapes of the gx and gy esr signals of both the membrane-bound microsomal and soluble bacterial cytochromes P-450 were dependent upon buffer composition. With either system, the gx and gy signals were symmetric in some buffers and asymmetric in others. However, in potassium phosphate buffer, the esr spectra of low-spin cytochrome P-450 in microsomes isolated from phenobarbital (PB)- or 3-methylcholanthrene (3-MC-induced rats and cytochrome P-450cam are similar with symmetric gx and gy signals. The esr spectrum of the low-spin form of cytochrome P-450 in isolated hepatocytes is similar to that of the microsomal and bacterial enzyme, again with a symmetric gx signal. The effects of alcohols and nitrogenous ligands on the esr spectrum of the low-spin form were also investigated. The data indicate that extreme care must be exercised when interpreting esr spectra with respect to possible cytochrome P-450 heterogeneity in the microsomal membrane. The conditions for studying substrate interactions with microsomal cytochrome P-450 must also take into account these changes in symmetry of the esr spectrum.  相似文献   

17.
Liver microsomal cytochrome P-448 purified from 3-methylcholanthrene-treated rats or rabbits contained seven free sulfhydryl groups per mole of enzyme as determined by amino acid analysis or by spectrophotometric titrations with 5,5′-dithiobis(2-nitroben-zoic acid), 4,4′-dipyridinedisulfide, 2-nitro-5-thiocyanobenzoic acid, and p-mercuribenzoate. The rat cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited 70% after modification of the enzyme with 5,5′-dithiobis(2-nitrobenzoic acid) but was unaffected after titration of the enzyme with other sulfhydryl reagents, suggesting that the sulfhydryl groups may not be essential for catalysis. On the other hand, the rabbit cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited following the modification of this enzyme with all of the sulfhydryl reagents listed above. Whether the loss in catalytic activity in this case is due to the essential role of the sulfhydryl groups in catalysis or to the steric hindrance or conformational change due to the substituent is uncertain.  相似文献   

18.
Comparison of nuclear and microsomal epoxide hydrase from rat liver   总被引:1,自引:0,他引:1  
The specific activities of hydration of nine arene and alkene oxides by purified nuclei prepared from the livers of 3-methylcholanthrene-pretreated rats were found to fall within the range of 2.2 to 9.1% of the corresponding microsomal values. Pretreatment with phenobarbital enhanced both the nuclear and microsomal hydration of phenanthrene-9,10-oxide, benzo(a)pyrene-11,12-oxide, and octene-1,2-oxide. 3-Methylcholanthrene pretreatment enhanced the nuclear hydration of these three substrates by 30–60% but had no significant effect on microsomal hydration. An epoxide hydrase modifier, metyrapone, stimulated the hydration of octene-1,2-oxide by the two organelles to quantitatively similar extents, but affected the nuclear and microsomal hydration of benzo(a)pyrene-4,5-oxide differentially. Cyclohexene oxide also exerted differential effects on nuclear and microsomal epoxide hydrase which were dependent both on the substrate and on the organelle. The inhibition by this agent of nuclear and microsomal epoxide hydrase was quantitatively similar only for a single substrate, benzo(a)anthracene-5,6-oxide. When purified by immunoaffinity chromatography, nuclear and microsomal epoxide hydrases from 3-methylcholanthrene-pretreated rats were shown to have identical minimum molecular weights (? 49,000) on polyacrylamide gels in the presence of sodium dodecyl sulfate. These findings support the assertion that microsomal metabolism can no longer be considered an exclusive index of the cellular activation of polycyclic aromatic hydrocarbons.  相似文献   

19.
Cytochrome P-448H/L-enriched and cytochrome P-448L-enriched microsomes were prepared from the livers of Sprague-Dawley rats treated with 3-methylcholanthrene (MC) and with a combination of MC and carbon tetrachloride, respectively, and their activities for mediating mutagenic activation of 9 carcinogenic aromatic amines and benzo[a]pyrene, which are found to be different from cyt. P-450 isozymes as to mutagenic activation, were compared on the basis of microsomal cytochrome P-450 content using Salmonella typhimurium TA98 as a tester bacterium. With regard to the substrate-specificity of cytochrome P-448 isozymes, the present results reflected the reported results with use of a cytochrome P-450-reconstituted system. These findings indicate that the mutation test with cytochrome P-448H/L-enriched and cytochrome P-448L-enriched microsomes could be used as a simple method for the determination of the cytochrome P-448 isozymes responsible for the mutagenic activation of carcinogens and mutagens without the use of a cytochrome P-450-reconstituted system.  相似文献   

20.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号