首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: WASp/SCAR proteins activate the Arp2/3 complex to nucleate actin filament assembly and are thought to have important roles in endocytosis. WASp is required for efficient endocytosis of antigen receptors, N-WASp promotes actin polymerization-dependent movement of endomembrane vesicles, and Las17 (a yeast WASp homolog) is required for endocytic internalization. However, it is unknown whether movement of endosomes or other organelles requires activation of the Arp2/3 complex by members of the WASp/SCAR family. RESULTS: Fluorescence video microscopy of yeast cells expressing a GFP-tagged G protein-coupled receptor (Ste2-GFP) as an endocytic marker revealed that endosomes and the lysosome-like vacuole are highly motile. Endosome/vacuole motility required actin polymerization, as indicated by sensitivity to latrunculin A, whereas microtubules were uninvolved. Endosome/vacuole motility did not require actin cables or myosin V (a MYO2 gene product), which moves secretory vesicles and the Golgi apparatus and mediates vacuole segregation. However, endosome motility required Las17, a WASp homolog. In contrast to other processes involving Las17, endosome/vacuole motility required the WCA domain of Las17, which is necessary and sufficient to activate the Arp2/3 complex. CONCLUSIONS: Endosome/vacuole motility in vivo requires actin polymerization stimulated by the WASp homolog Las17. WASp/SCAR family members in mammalian cells may have similar functions. Defects in endosome/lysosome motility may contribute to deficits in lymphocyte or macrophage function observed in human patients lacking WASp or developmental defects in N-WASp-deficient mice.  相似文献   

2.
Actin assembly nucleated by Arp2/3 complex has been implicated in the formation and movement of endocytic vesicles. The dendritic nucleation model has been proposed to account for Arp2/3-mediated actin assembly and movement. Here, we explored the model by examining the role of capping protein in vivo, with quantitative tracking analysis of fluorescence markers for different stages of endocytosis in yeast. Capping protein was most important for the initial movement of endocytic vesicles away from the plasma membrane, which presumably corresponds to vesicle scission and release. The next phase of endosome movement away from the plasma membrane was also affected, but less so. The results are consistent with the dendritic nucleation model's prediction of capping protein as important for efficient actin assembly and force production. In contrast, the movement of late-stage endocytic vesicles, traveling through the cytoplasm en route to the vacuole, did not depend on capping protein. The movement of these vesicles was found previously to depend on Lsb6, a WASp interactor, whereas Lsb6 was found here to be dispensable for early endosome movement. Thus, the molecular requirements for Arp2/3-based actin assembly differ in early versus later stages of endocytosis. Finally, acute loss of actin cables led to increased patch motility.  相似文献   

3.
The spatial and temporal regulation of actin polymerization is crucial for various cellular processes. Members of the Wiskott–Aldrich syndrome protein (WASP) family activate the Arp2/3-complex leading to actin polymerization. The yeast Saccharomyces cerevisiae contains only one WASP homolog, Las17, that requires additional factors for its regulation. Lsb1 and Lsb2/Pin3 are two yeast homologous proteins bearing an SH3 domain that were identified as Las17-binding proteins. Lsb2/Pin3 that promotes prion induction was suggested to link this prion formation to the actin cytoskeleton. However, the cellular role of Lsb1 and the molecular function of both Lsb1 and Lsb2 remain unknown. In this study, we show that Lsb1 and/or Lsb2 full-length proteins inhibit Las17-mediated actin polymerization in vitro, Lsb2 being a less potent inhibitor of Las17 activity compared to Lsb1. Addition of Lsb1 or Lsb2 to the corresponding full-length Lsb1/2 further inhibits Las17 activity. Lsb1 and Lsb2 form homo- and hetero-oligomeric complexes suggesting that these two proteins could regulate Las17 activity via dimerization or cooperative binding. In vivo, overexpressed Lsb1 and Lsb2 proteins cluster Las17-CFP in few cytoplasmic punctate structures that are also positive for other Arp2/3-dependent actin polymerization effectors like Sla1 or Abp1. But, only Lsb1 overexpression blocks the internalization step of receptor-mediated endocytosis. This shows a specific function of Lsb1 in endocytosis.  相似文献   

4.
During clathrin-mediated endocytosis, branched actin polymerization nucleated by the Arp2/3 complex provides force needed to drive vesicle internalization. Las17 (yeast WASp) is the strongest activator of the Arp2/3 complex in yeast cells; it is not autoinhibited and arrives to endocytic sites 20 s before actin polymerization begins. It is unclear how Las17 is kept inactive for 20 s at endocytic sites, thus restricting actin polymerization to late stages of endocytosis. In this paper, we demonstrate that Las17 is part of a large and biochemically stable complex with Sla1, a clathrin adaptor that inhibits Las17 activity. The interaction is direct, multivalent, and strong, and was mapped to novel Las17 polyproline motifs that are simultaneously class I and class II. In vitro pyrene-actin polymerization assays established that Sla1 inhibition of Las17 activity depends on the class I/II Las17 polyproline motifs and is based on competition between Sla1 and monomeric actin for binding to Las17. Furthermore, live-cell imaging showed the interaction with Sla1 is important for normal Las17 recruitment to endocytic sites, inhibition during the initial 20 s, and efficient endocytosis. These results advance our understanding of the regulation of actin polymerization in endocytosis.  相似文献   

5.
Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization.  相似文献   

6.
In Saccharomyces cerevisiae, the WASP (Wiskott-Aldrich syndrome protein) homologue Las17p (also called Bee1p) is an important component of cortical actin patches. Las17p is part of a high-molecular-weight protein complex that regulates Arp2/3 complex-dependent actin polymerization at the cell cortex and that includes the type I myosins Myo3p and Myo5p and verprolin (Vrp1p). To identify other factors implicated with this complex in actin regulation, we isolated proteins that bind to Las17p by two-hybrid screening and affinity chromatography. Here, we report the characterization of Lsb7/Bzz1p (for Las seventeen binding protein 7), an Src homology 3 (SH3) domain protein that interacts directly with Las17p via a polyproline-SH3 interaction. Bzz1p coimmunoprecipitates in a complex with Las17p, Vrp1p, Myo3/5p, Bbc1p, Hsp70p, and actin. It colocalizes with cortical actin patches and with Las17p. This localization is dependent on Las17p, but not on F-actin. Bzz1p interacts physically and genetically with type I myosins. While deletion of BZZ1 shows no obvious phenotype, simultaneous deletion of the BZZ1, MYO3, and MYO5 genes is lethal. Overexpression of Bzz1p inhibits cell growth, and a bzz1Delta myo5Delta double mutant is unable to restore actin polarity after NaCl stress. Finally, Bzz1p in vitro is able to recruit a functional actin polymerization machinery through its SH3 domains. Its interactions with Las17p, Vrp1p, and the type I myosins are essential for this process. This suggests that Bzz1p could be implicated in the regulation of actin polymerization.  相似文献   

7.
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI+] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI+] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI+] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.  相似文献   

8.
BACKGROUND: WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS: We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS: Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.  相似文献   

9.
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.  相似文献   

10.
Summary. The formation of actin filaments is crucial for endocytosis and other interrelated cellular phenomena such as motility, polarized morphogenesis, and cytokinesis. In this paper we have investigated the role of the WASP/Las17-interacting protein Bzz1p in endocytosis and trafficking to the vacuole. We and others have recently shown that Bzz1p is an actin patch protein that interacts directly with Las17p via a SH3-polyproline interaction. Bzz1p functions with type I myosins to restore polarity of the actin cytoskeleton after NaCl stress. In an in vitro bead assay, GST-Bzz1p fusion protein triggers a functional actin polymerization machinery through its two C-terminal SH3 domains. In this paper we implicate Bzz1p with the type I myosins both in fluid-phase and in the internalization step of receptor-mediated endocytosis. As deduced from their localization as GFP fusions, the vacuolar delivery of endocytic and biosynthetic cargoes as well as the multivesicular body pathway appear unaffected. We further elucidate Bzz1p direct participation in actin polymerization by demonstrating that each of the SH3 domains of Bzz1p individually is able to trigger actin polymerization in a cell-free system dependent on Arp2/3, Las17p, Vrp1p, and the type I myosins. Taken together, our results show that Bzz1p participates, essentially via its SH3 domains, in early steps of endocytosis together with known actin nucleation activators. Correspondence and reprints: Equipe Cytosquelette et Trafic Intracellulaire, UMR7156 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue Descartes, 67084 Strasbourg, France. Present address: Division of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland.  相似文献   

11.
BACKGROUND: In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS: Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS: Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.  相似文献   

12.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   

13.
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.  相似文献   

14.
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. Late endosomes, organelles of the degradative lysosomal route, seem to require associated actin filaments for proper localization and function. We show here that the F-actin and phospholipid binding protein annexin A8 is associated specifically with late endosomes. Altering intracellular annexin A8 levels drastically affected the morphology and intracellular distribution of late endosomes. Trafficking through the degradative pathway was delayed in the absence of annexin A8, resulting in attenuated ligand-induced degradation of the epidermal growth factor receptor and prolonged epidermal growth factor-induced activation of mitogen-activated protein kinase. Depletion of annexin A8 reduced the association of late endosomal membranes with actin filaments. These results indicate that the defective cargo transport through the late endocytic pathway and the imbalanced signaling of activated receptors observed in the absence of annexin A8 results from the disturbed association of late endosomal membranes with the actin network, resulting in impaired actin-based late endosome motility.  相似文献   

15.
Wiskott-Aldrich Syndrome protein (WASp) is a key regulator of the Arp2/3 complex and the actin cytoskeleton in hematopoietic cells. WASp is capable of forming an auto-inhibited conformation, which can be disrupted by binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate, leading to its activation. Stimulation of the collagen receptor on platelets and crosslinking the B-cell receptor induce tyrosine phosphorylation of WASp. Here we show that the Src family kinase Hck induces phosphorylation of WASp-Tyr(291) independently of Cdc42 and that this causes a shift in the mobility of WASp upon SDS-PAGE. A phospho-mimicking mutant, WASp-Y291E, exhibited an enhanced ability to stimulate actin polymerization in a cell-free system and when microinjected into primary macrophages induced extensive filopodium formation with greater efficiency than wild-type WASp or a Y291F mutant. We propose that phosphorylation of Tyr(291) directly regulates WASp function.  相似文献   

16.
Rab5 regulates motility of early endosomes on microtubules   总被引:1,自引:0,他引:1  
The small GTPase Rab5 regulates membrane docking and fusion in the early endocytic pathway. Here we reveal a new role for Rab5 in the regulation of endosome interactions with the microtubule network. Using Rab5 fused to green fluorescent protein we show that Rab5-positive endosomes move on microtubules in vivo. In vitro, Rab5 stimulates both association of early endosomes with microtubules and early-endosome motility towards the minus ends of microtubules. Moreover, similarly to endosome membrane docking and fusion, Rab5-dependent endosome movement depends on the phosphatidylinositol-3-OH kinase hVPS34. Thus, Rab5 functionally links regulation of membrane transport, motility and intracellular distribution of early endosomes.  相似文献   

17.
Kaksonen M  Sun Y  Drubin DG 《Cell》2003,115(4):475-487
In budding yeast, many proteins involved in endocytic internalization, including adaptors and actin cytoskeletal proteins, are localized to cortical patches of differing protein composition. Using multicolor real-time fluorescence microscopy and particle tracking algorithms, we define an early endocytic pathway wherein an invariant sequence of changes in cortical patch protein composition correlates with changes in patch motility. Three Arp2/3 activators each showed a distinct behavior, suggesting distinct patch-related endocytic functions. Actin polymerization occurs late in the endocytic pathway and is required both for endocytic internalization and for patch disassembly. In cells lacking the highly conserved endocytic protein Sla2p, patch motility was arrested and actin comet tails associated with endocytic patch complexes. Fluorescence recovery after photobleaching of the actin comet tails revealed that endocytic complexes are nucleation sites for rapid actin polymerization. Attention is now focused on the mechanisms by which the order and timing of events in this endocytic pathway are achieved.  相似文献   

18.
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.  相似文献   

19.
Phagosomes containing live virulent mycobacteria undergo fusion with early endosomes, but they are unable to mature normally. Accordingly, they do not fuse with lysosomes. Although M. avium-containing phagosomes retain fusion and intermingling characteristics of early endosomes indefinitely, fusions with early endosomes are increasingly restricted as bacteria multiply. In addition, when endocytic tracers, such as horseradish peroxidase (HRP), are added to M. avium-infected macrophages at 1 or up to 15 days after infection, an atypical time course of acquisition of the tracer by the phagosomes is observed, i.e., a 10 to 20 min lag, instead of immediate acquisition as is typical for early endosomes (and phagosomes with early endosome characteristics). These events coincide with a marked disorganization of the actin filament network in M. avium-infected macrophages. In the present study, we have therefore addressed the following question: Do actin filaments play a role in fusion and intermingling of contents between early endosomes and immature phagosomes that undergo homotypic fusion with early endosomes? We examined the time course of acquisition of subsequently internalized endocytic marker (HRP) by early endosome-like preexisting phagosomes, i.e. 2 hour-old phagosomes with either hydrophobic latex particles, virulent or avirulent M. avium, after depolymerization of the actin filament network with cytochalasin D or after repolymerization of the actin filament network with jasplakinolide, in cases where the network had been depolymerized (macrophages infected with M. avium, at 1 or up to 7 days after infection). By direct morphological observation at the electron microscope level and by a kinetic approach, we show here that depolymerization of the actin filament network with cytochalasin D delays acquisition of HRP whereas repolymerization restores immediate acquisition of the marker. We conclude that the actin filament network is involved in fusion and intermingling of endocytic contents between early endosomes and early endosome-like phagosomes, and that disruption of this network by M. avium is the cause for the atypical acquisition of content marker by phagosomes containing these pathogenic mycobacteria.  相似文献   

20.
To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号