首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Wingless (ergatoid) males of the tramp ant Cardiocondyla minutior attack and kill their young ergatoid rivals and thus attempt to monopolize mating with female sexuals reared in the colony. Because of the different strength of local mate competition in colonies with one or several reproductive queens, we expected the production of new ergatoid males to vary with queen number. Sex ratios were mostly female-biased, but in contrast to the sympatric species C. obscurior (Cremer and Heinze, 2002) neither the percentage of ergatoid males nor of female sexuals among the first 20 sexuals produced varied considerably with queen number. As in C. obscurior, experimental colony fragmentation led to the production of winged males, whereas in unfragmented control colonies only ergatoid males eclosed.Received 3 December 2003; revised 20 February 2004; accepted 23 February 2004.  相似文献   

2.
Summary Female sexuals of the ant Leptothorax gredleri attract males by sexual calling. In an experimental set-up allowing for competition among males, both female and male sexuals copulated with up to four partners, with the median being one mate in both sexes. Neither male nor female sexuals invariably mated with the first partner they encountered, but we could not find any morphological difference between sexuals that succeeded in mating multiply and those that copulated only once. Males did not aggressively compete for access to the female sexuals. According to microsatellite genotyping, workers produced by multiply mated queens were all offspring of a single father, i.e. queens appear to use sperm from a single mate to fertilize their eggs. Population genetic studies revealed a strong population subdivision, suggesting that both male and female sexuals mate in the vicinity of their maternal nests and that gene flow is strongly restricted even between forest patches isolated only by a few meters of grassland.  相似文献   

3.
Throughout their lives, animals adapt their behaviour to environmental fluctuations and to their own requirements. In social insects, behavioural changes are often particularly conspicuous. For example, in many ant species, reproductive sexuals leave their maternal nests and engage in risky mating and dispersal activities. Female sexuals experience, during a short period of time, dramatic changes in terms of behaviour and environmental conditions. But because sexual activities of ants are not easily observed, few studies have quantified in detail how behaviour alters with maturation and mating. We studied how various behavioural traits of Leptothorax gredleri female sexuals, a species in which female sexuals attract males by ‘female calling’, change before and after mating. We tested the hypothesis that behavioural variation reflects the altered requirements of queens to adapt to a particular situation. To this end, we compared geotactic, phototactic and locomotor behaviour across a wide range of life stages from lightly coloured, unmated female sexuals to old, mated queens. The results showed that female sexuals of L. gredleri change conspicuously their geotactic, phototactic and locomotor behavioural traits over their life stages. Three different behavioural states were evident (1) from light to dark female sexuals, individuals have negative phototaxis and reduced locomotor activity; (2) mature female sexuals during the daily period of sexual activity have strong phototaxis, negative geotaxis and an important locomotor activity; and (3) freshly mated and old mated queens avoid light and decrease their locomotor activity. These sharp differences in behaviour between stages match the transition from the relative safety of the nest chamber to the adversary world outside the nest , and back.  相似文献   

4.
The best known of the conflicts occurring in eusocial Hymenoptera is queen-worker conflict over sex ratio. So far, sex ratio theory has mostly focused on optimal investment in the production of male versus female sexuals, neglecting the investment in workers. Increased investment in workers decreases immediate sexual productivity but increases expected future colony productivity. Thus, an important issue is to determine the queen's and workers' optimal investment in each of the three castes (workers, female sexuals, and male sexuals), taking into account a possible trade-off between production of female sexuals and workers (both castes developing from diploid female eggs). Here, we construct a simple and general kin selection model that allows us to calculate the evolutionarily stable investments in the three castes, while varying the identity of the party controlling resource allocation (relative investment in workers, female sexuals, and male sexuals). Our model shows that queens and workers favor the investment in workers that maximizes lifetime colony productivity of sexual males and females, whatever the colony kin structure. However, worker production is predicted to be at this optimum only if one of the two parties has complete control over resource allocation, a situation that is evolutionarily unstable because it strongly selects the other party to manipulate sex allocation in its favor. Queens are selected to force workers to raise all the males by limiting the number of eggs they lay, whereas workers should respond to egg limitation by raising a greater proportion of the female eggs into sexual females rather than workers as a means to attain a more female-biased sex allocation. This tug-of-war between queens and workers leads to a stable equilibrium where sex allocation is between the queen and worker optima and the investment in workers is below both parties' optimum. Our model further shows that, under most conditions, female larvae are in strong conflict with queens and workers over their developmental fate because they value their own reproduction more than that of siblings. With the help of our model, we also investigate how variation in queen number and number of matings per queen affect the level of conflict between queens, workers, and larvae and ultimately the allocation of resource in the three castes. Finally, we make predictions that allow us to test which party is in control of sex allocation and caste determination.  相似文献   

5.
We investigated population genetic structure, mating system, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis livida. Pedigree analyses at polymorphic microsatellite loci show that colonies are headed by a single queen, and that queens are mated with two to eight males. No inbreeding was found in the population sampled. Colonies are genetically differentiated and exhibit no isolation-by-distance pattern, consistent with independent foundation of new colonies. Workers do reproduce and lay haploid (arrhenotokous) eggs in queenless colonies; conversely, we found no evidence of worker reproduction in queenright nests. In contrast with C. cursor, where new queens are produced by thelytokous parthenogenesis, female sexuals and workers of C. livida arise from classical sexual reproduction. We discuss the parallels and contrasts between the mating system and population structure in C. livida and the other Cataglyphis species studied so far.  相似文献   

6.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

7.
Workers of the Florida harvester ant (Pogonomyrmex badius), the only North American Pogonomyrmex with a polymorphic worker caste, produce males when colonies are orphaned. In this study,we assessed the reproductive potential of workers of each caste group, minors and majors, in the presence and absence of the queen, and tested whether males produced in natural queen-right colonies are derived from workers. Worker size was positively correlated with ovariole number such that major workers had approximately double the number of ovarioles as minor workers. The number of vitellogenic oocytes, a measure of reproductive potential, was greater in major compared to minor workers and increased in both worker castes when queens were removed. Major workers have greater reproductive potential than minors although they represent a minority within the colony (~5% of workers are majors). Worker produced eggs were visible in colonies 28 – 35 days after queen removal. This time lag, from queen removal to egg production, is similar to other ants and bees. Though workers are capable of producing viable eggs, we found no evidence that they do so in queen-right colonies, suggesting that worker reproduction is controlled via some social mechanism (self restraint, policing, or inhibition). This result supports predictions of kin selection theory – that due to multiple mating by the queen workers are more related to queen-produced males than most worker-produced males and should thus favor reproduction by the queen and inhibit reproduction by other workers. Received 25 January 2007; revised 1 May 2007; accepted 21 May 2007.  相似文献   

8.
Life-cycle and foraging patterns of native Bombus terrestris populations were investigated at two sites in the Mediterranean region of Turkey, Phassalis (0 – 100 m above sea level [a.s.l.]) and Termessos (500 – 700 m a.s.l.). Bumble-bee activity was recorded during standard bee walks from November 2003 until the end of October 2004, each site being visited three times every month during the one-year period. The yearly dynamics of flight, the flowering plant species visited, and the visitation frequencies of these plants were recorded during every bee walk at both sites. There were considerable differences between the two populations with regard to the dates when the queens emerged from diapause (the emerging season), the timing of the appearance of sexuals (young queens and males), and the total number of plant species visited. Bombus terrestris queens emerged from diapause in November-December at the Phassalis site (coastal area) and in February-March at the Termessos site. The queens aestivated at the Phassalis site, whereas they hibernated at the Termessos site. Only one generation per year was produced at each site. The duration of the queens’ diapause lasted 5 – 8 months and length of the life cycle 190 – 215 days. Native B. terrestris populations were noted to forage on 47 flowering plant species from 20 families (10 at the Phassalis site and 40 at the Termessos site) during the study period. Two of the plant species (Arbutus unedo L. and Vitex agnus-castus L.) have long flowering periods and play a crucial role in the life cycle of native B. terrestris populations. The emergence of queens at the aestivation site was synchronized with the flowering of Arbutus unedo L., while the emergence of sexuals coincided with the flowering of Vitex agnus-castus L. at both sites. Received 30 May 2007; revised 5 December 2007; accepted 8 January 2008.  相似文献   

9.
In ants, mating and colony founding are critical steps in the life of ant queens. Outside of their nests, young queens are exposed to intense predation. Therefore, they are expected to have evolved behavior to accurately and quickly locate a nesting place. However, data on the early life history of female reproductives are still lacking. Leptothorax gredleri is a suitable model organism to study the behavior of young queens. Reproductives can be reared under artificial conditions and readily mate in the laboratory. After mating, L. gredleri queens have the options to found solitarily, seek adoption into another colony, or return into their natal nest. In this study, we investigated the decision-making processes of female sexuals before and after mating. In particular, we tested whether female sexuals use chemical cues to find their way back to the nest, studied if they prefer their own nest over other nesting sites and followed the adoption dynamics of mated queens over 8 weeks (plus hibernation and spring). We showed that female sexuals and freshly mated queens spent more time on substrate previously used by workers from their own colony and from another colony than on a blank substrate. This discriminatory capability of queens appears to be lost in old, reproductive queens. Nest choice experiments showed that female sexuals and freshly mated queens can distinguish their own nest while old mated queens’ do not. When reintroduced in their maternal colony, young queens were readily adopted, but a few weeks later aggression against young queens led to their emigration from the maternal nest and eventually also death.  相似文献   

10.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

11.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

12.
The parapatric sibling ant species Temnothorax nylanderi and T. crassispinus hybridize in the contact zone in the Franconian Jura, Southern Germany. Aim of our study was to investigate the impact of hybridization on colony composition and fitness. We classified colonies as either ‘pure’ or containing hybrids by determining their allozyme pattern at GPI, an enzyme that is fixed for different alleles in the two parental species, and quantified their reproductive output. Most colonies with hybrid workers had a T. crassispinus queen. Colonies with heterozygous, hybrid workers produced more young workers than colonies of the parental species but similar numbers of male and female sexuals. Female sexuals from colonies with heterozygous workers had a significantly lower weight than female sexuals from pure colonies. Only a single reproductive queen was found to be heterozygous, suggesting reduced fitness of hybrid queens. As in the parental species, hybrid colonies appear to be frequently taken over by alien queens, which obscures the genetic colony structure. Received 6 April 2006; revised 10 June 2006; accepted 15 June 2006.  相似文献   

13.
1. Bumblebee colonies show much variation in the number of workers, drones, and queens produced. Because this variation prevails even when colonies are kept under identical conditions, it does not seem to be caused by extrinsic factors but rather by differences between founding queens. 2. The most likely factor that could cause differences between queens is diapause. Although colonies are raised under standardised conditions, the queens often experience diapause of different length. If there are costs associated with diapause that influence post‐diapause reproduction, the diapause history of the queens could affect colony characteristics. 3. Here, several colony characteristics are compared: number of first and second brood workers; total number of workers, drones, and queens; energy spent on sexuals; sex ratio; rate of worker production; time to emergence of first reproductive; and colony lifetime. Colonies were used where the queens experienced a diapause treatment of 0 (nondiapause queens), 2, and 4 months. 4. Although no proof was found for the existence of costs associated with diapause, the colony characteristics of nondiapause queens were significantly different from those of diapause queens. Colonies of nondiapause queens produced the lowest number of workers but the highest number of young queens. 5. It is argued that these nondiapause colonies are more time‐constrained than diapause colonies because nondiapause colonies produce two generations within the same season and should therefore be more efficient in producing sexual offspring. 6. Moreover, nondiapause colonies should rear a more female‐biased sex ratio because they can be certain of the presence of males produced by other (diapause) colonies.  相似文献   

14.
The classical model of colony dynamics developed by Macevicz and Oster predicts that optimal colony fitness in annual eusocial insects is achieved by a bang-bang strategy of reproduction: exclusive production of workers (ergonomic phase) followed by exclusive production of sexuals (reproductive phase). We propose an alternative model that assumes colony development in discrete broods and a limited overall investment potential of the queen. Based on the costs for producing eggs, workers, and sexuals and efficiency of individuals we predict the optimal number of workers and sexuals in the colony for each brood of the colony cycle that maximizes overall colony fitness. To link our model assumptions to the real world we chose model parameters according to field data of the halictid bee Lasioglossum malachurum. However, our model is representative of a large number of species with an annual life cycle and with discrete broods. Our model shows that the optimal partitioning of resources, i.e. the optimal workers/sexuals ratio depends on rearing cost for sexuals as well as productivity of workers but not on the queens’ total investment, egg cost, or rearing cost for workers. In complete accordance to Macevicz and Oster we predict a bang-bang reproduction strategy despite the differences in the basic assumptions. Potential deviations from this strategy and transitions from social to solitary breeding are discussed in the framework of our model. Received 31 October 2006; revised 29 March 2007; accepted 17 April 2007.  相似文献   

15.
ABSTRACT. In colonies of Monomorium pharaonis (L.), the presence of fertile queens normally prevents the production of new queens and males (sexuals). The inhibitory effect of the presence of fertile queens is not shared by virgin queens or by freshly killed dead queens, but can be substituted by the artificial introduction of eggs. Moreover, fertile queens made sterile by exposure to a Juvenile Hormone analogue lose their ability to prevent the rearing of new sexuals. Thus, the inhibitory action of queens is mediated via the eggs that they lay, such that the rearing of new sexuals is limited to the times when either the number or fecundity of extant queens is reduced. Workers appear able to detect changes in the number of eggs present in the colony. When eggs are plentiful (i.e. when queens are laying at maximum rates), only worker brood is reared, but if egg numbers decline, workers will respond by rearing a new batch of males and queens. This method of caste regulation is highly efficient, and the inhibitory action of eggs on the production of sexuals is comparable to the action of 'queen substances' reported in some other social insects.  相似文献   

16.
Arriving earlier in the breeding area than his rivals may be beneficial for a male when females mate only once or during a short time span. The timing of a male's entrance is usually determined by the male himself, e.g., through returning early from his winter quarters or through accelerated larval development . Here, we document a surprisingly simple way of "first come, first served" in a species with local mate competition. In multiqueen colonies of a Cardiocondyla ant, mother queens make sure that their own sons are the first to monopolize mating with a large harem of female sexuals by producing extremely long-lived males early in colony life. Whereas queens in newly founded single-queen colonies started to produce male and female sexuals only several weeks after the eclosion of their first worker offspring, queens in multiqueen colonies precociously reared sons long before the first female sexuals and even before the emergence of their first workers. These early males killed all later emerging males in the nest and mated with all female sexuals subsequently produced. Our data document that the patterns of growth and productivity of insect colonies are surprisingly flexible and can be turned upside down under appropriate selection pressures.  相似文献   

17.
A major goal of studies on social animals is to understand variation in reproduction within and between groups. We used hierarchical regressions to analyze oviposition rates in the neotropical termite Nasutitermes corniger, a species with both monogynous and polygynous colonies. Queen fecundity was a non-linear, saturating function of queen weight. Greater queen weight was associated with larger nest size and with lower numbers of queens per nest, suggesting competition among queens for resources acquired by the colony. The collective egglaying rate of pairs of queens exceeded that of single queens, but further increases in queen number did not raise total fecundity. Skew in oviposition rates, as quantified by Morisita’s index I δ, averaged 1.2, indicating inequalities in reproductive rates that are only moderately greater than expected for random apportionment. The leveling off of oviposition with increasing queen weight suggests that it is costly for individual females to produce eggs at high rates, which could favor tolerance of reproduction by other females, reducing reproductive skew. We hypothesize that the incentive to tolerate reproduction by other females is especially pronounced for heavier queens, because these queens are close to the limit of their own reproductive capacity. Consistent with this hypothesis, skew in oviposition rates was inversely related to the mean weight of queens within a nest. Received 8 March 2007; revised 17 September 2007; accepted 3 October 2007.  相似文献   

18.
Most disturbed habitats in the tropics and subtropics harbor numerous species of invasive ants, and occasionally the same species has been introduced repeatedly from multiple geographical sources. We examined how experimental crossbreeding between sexuals from different populations affects the fitness of queens of the tramp ant Cardiocondyla itsukii, which is widely distributed in Asia and the Pacific Islands. Eggs laid by queens that mated with nestmate males had a higher hatchi ng rate than eggs laid by queens mated to males from neighboring (Hawaii x Kauai) or distant introduced populations (Hawaii/Kauai x Okinawa). Furthermore, inbreeding queens had a Ion ger lifespan and produced a less female-biased offspring sex ratio than queens from allopatric mating. This suggests that the genetic divergence between different source populations may already be so large that in case of multiple invasions eventual crossbreeding might negatively affect the fitness of tramp ants.  相似文献   

19.
The remarkable ability of slave-making ants to integrate chemically in the colonies of their host species makes them useful model systems for investigating the role of cuticular hydrocarbons in chemical recognition. The purpose of our study was to examine the influence of the rearing host species on the cuticular hydrocarbon profile and on the mating behaviour of sexuals of the slave-making ant Chalepoxenus muellerianus. Sexuals from a population parasitizing exclusively the host species Temnothorax unifasciatus were reared in the laboratory either with their natural host or another potential host species, Temnothorax recedens. C. muellerianus males reared with T. unifasciatus investigated and mounted female sexuals reared with the same host significantly more often than female sexuals reared with T. recedens. Similarly, C. muellerianus males reared with T. unifasciatus discriminated against female sexuals from natural T. recedens colonies. Males experimentally or naturally reared with T. recedens did not clearly discriminate between female sexuals reared by the two host species and only rarely engaged in mating attempts with either type of female sexuals. Chemical analyses showed that host species affect the chemical profile of C. muellerianus sexuals and vice versa. Our findings indicate that cuticular hydrocarbons might be important in the mating success of this ant species. Received 21 June 2006; revised 20 February 2007; accepted 1 March 2007.  相似文献   

20.
Reproductive cooperation confers benefits, but simultaneously creates conflicts among cooperators. Queens in multi-queen colonies of ants share a nest and its resources, but reproductive competition among queens often results in unequal reproduction. Two mutually non-exclusive factors may produce such inequality in reproduction: worker intervention or queen traits. Workers may intervene by favouring some queens over others, owing to either kinship or queen signals. Queens may differ in their intrinsic fecundity at the onset of oviposition or in their timing of the onset of oviposition, leading to their unequal representation in the brood. Here, we test the role of queen kin value (relatedness) to workers, timing of the onset of oviposition and signals of presence by queens in determining the maternity of offspring. We show that queens of the ant Formica fusca gained a significantly higher proportion of sexuals in the brood when ovipositing early, and that the presence of a caged queen resulted in a significant increase in both her share of sexual brood and her overall reproductive share. Moreover, the lower the kin value of the queen, the more the workers invested in their own reproduction by producing males. Our results show that both kinship and breeding phenology influence the outcome of reproductive conflicts, and the balance of direct and indirect fitness benefits in the multi-queen colonies of F. fusca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号